بهبود زمان تکمیل فرایند طراحی بالگرد ترابری با استفاده از روش مبتنی بر ماتریس تبدیل کار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / گروه هوافضا، دانشکدة علوم و فنون نوین، دانشگاه تهران، تهران

2 عضو هیات علمی / گروه هوافضا، دانشکدة علوم و فنون نوین، دانشگاه تهران

چکیده

توسعة محصولات هوافضایی در کوتاه‌ترین زمان ممکن، از مهم‌ترین پارامترهای رقابتی در بازار به‌شمار می‌آید. این در حالی است که پیچیدگی ذاتی این محصولات سبب ایجاد چرخه‌های گستردة اطلاعاتی می‌شود که زمان تکمیل فرایند طراحی را به‌شکل چشم‌گیری افزایش می‌دهد. این واقعیت کاستن از زمان تکمیل در کنار حفظ کیفیت را به ضرورتی انکارناپذیر مبدل می‌کند. در این مقاله از طرح اجرایی با ریسک کمینه برای به‌سازی فرایند مفهومی طراحی بالگرد ترابری ای. اچ. 101، به عنوان مورد مطالعاتی، استفاده شده که برای مدیریت تکرارها و کاهش زمان تکمیل بر چارچوب ماتریس تبدیل کار استوار است. این طرح یک سیاست کاری را مطرح می‌کند که در آن وظایف طراحی با بیشترین سطح همگیری در گام‌های نخست طراحی مورد توجه قرار گرفته و با پیشرفت طراحی، دیگر وظایف به‌صورت تدریجی مورد توجه قرار می‌گیرند. جانمایة این طرح، چیدمان مؤثر وظایف طراحی در کنار کاستن از ریسک دوباره‌کاری است. نتایج شبیه‌سازی‌های زمان‌گسسته نشانگر برتری نسبی طرح پیشنهادی نسبت به مدل‌های رایج از منظر زمان تکمیل است. این در حالی است که در این روش در عمل ریسک بازخورد در پایین‌ترین سطح ممکن قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Minimum risk execution plan for conceptual design process of utility helicopter: a WTM-based method

نویسندگان [English]

  • Mohammad Haji Jafari 1
  • Amirreza Kosari 2
  • Mehdi Fakoor 2
1 Phd Student, Aerospace Group, FNST, University of Tehran, Tehran
2 Associate Professor, Aerospace Group, FNST, University of Tehran
چکیده [English]

Developing aerospace products in the shortest possible time is one of the most important market competitive parameters. Meanwhile, inherent complexity of these products leads to large information cycles that increase completion time, significantly. As a result, the shortest completion time beside acceptable quality becomes an inevitable necessity. In this paper, “Minimum-Risk Execution Plan (MREP)” is used to improve the conceptual design process of EH101 utility helicopter as the case study. The plan is formed around iteration management and reducing completion time in framework of Work Transformation Matrix (WTM). MREP is a work policy based on beginning with tasks with the highest couplings and by progressing the design process, adding the others in a gradual manner. The method can be described as the art of effective arrangement of design tasks while observing rework risk. Discrete-time simulation results show the supremacy of the proposed method over existing models in regard of completion time while the rework risk is maintained in the lowest possible level.

کلیدواژه‌ها [English]

  • design structured matrix (DSM)
  • work transformation matrix (WTM)
  • design process improvement
  • minimum risk
  • work policy
[1] D. E. Whitney, Designing the design process, Research in Engineering Design, 1990, Vol. 2, No. 1, pp. 3–13.
[2] S. D. Eppinger, D. E. Whitney, R. P. Smith, D. A. Gebala, A model-based method for organizing tasks in product development, Research in Engineering Design, 1994, Vol. 6, No. 1, pp. 1–13.
[3] A. A. Yassine, K. R. Chelst, D. R. Falkenburg, A decision analytic framework for evaluating concurrent engineering, IEEE Transactions on Engineering Management, 1999, Vol. 46, No. 2, pp. 144–57.
[4] R. P. Smith, S. D. Eppinger, Identifying Controlling Features of Engineering Design Iteration, Management Science, 1997, Vol. 43, No. 3, pp. 276–93.
[5] W. Nasr, A. Yassine, O. Abou Kasm, An analytical approach to estimate the expected duration and variance for iterative product development projects, Research in Engineering Design, 2016, Vol. 27, No. 1, pp. 55–71.
[6] A. Y. Ha, E. L. Porteus, Optimal Timing of Reviews in Concurrent Design for Manufacturability, Management Science, 1995, Vol. 41, No. 9, pp. 1431–47.
[7] R. P. Smith, J. A. Morrow, Product development process modeling, Design Studies, 1999, Vol. 20, No. 3, pp. 237–61.
[8] T. R. Browning, Applying the design structure matrix to system decomposition and integration problems: a review and new directions, IEEE Transactions on Engineering Management, 2001, Vol. 48, No. 3, pp. 292–306.
[9] D. V. Steward, The design structure system: A method for managing the design of complex systems, IEEE Transactions on Engineering Management, 1981, Vol. 28, No. 3, pp. 71–4.
[10] T. R. Browning, Process integration using the design structure matrix, Systems Engineering, 2002, Vol. 5, No. 3, pp. 180–93.
[11] A. Kosari, M. H. Jafari, M. Fakoor, On Equivalency Between Numerical Process DSM and State-Space Representation, IEEE Transactions on Engineering Management, 2016, Vol. 63, No. 4, pp. 404–13.
[12] T. R. Browning, S. D. Eppinger, Modeling impacts of process architecture on cost and schedule risk in product development, IEEE Transactions on Engineering Management, 2002, Vol. 49, No. 4, pp. 428–42.
[13] D. Kim, On representations and dynamic analysis of concurrent engineering design, Journal of Engineering Design, 2007, Vol. 18, No. 3, pp. 265–77.
[14] K. L. Ong, S. G. Lee SG, L. P. Khoo, Homogeneous state-space representation of concurrent design, Journal of Engineering Design, 2003, Vol. 14, No. 2, pp. 221–45.
[15] C. D. McDaniel, A Linear Systems Framework for Analyzing the Automotive Appearance Design Process, Ms Thesis, Massachusetts, MIT, 1996.
[16] R. P. Smith, S. D. Eppinger, A Predictive Model of Sequential Iteration in Engineering Design, Management Science, 1997, Vol. 43, No. 8, pp. 1104–20.
[17] R. A. Ahmadi, R. H. Wang, Rationalizing Product Development Processes, UCLA: Anderson School of Management; 1994.
[18] R. P. Smith, S. D. Eppinger, Deciding between Sequential and Concurrent Tasks in Engineering Design, Concurrent Engineering, 1998, Vol. 6, No. 1, pp. 15–25.
[19] A. Yassine, An Introduction to Modeling and Analyzing Complex Product Development Processes Using the Design Structure Matrix (DSM) Method, Management Science, 2004, Vol. 51, No. 9, pp. 1-17.
[20] T. R. Browning, A. A. Yassine, Managing a Portfolio of Product Development Projects under Resource Constraints: Managing a Portfolio of Product Development Projects under Resource Constraints, Decision Sciences, 2016, Vol. 47, No. 2, pp. 333–72.
[21] S. H. Cho, S. D. Eppinger, A Simulation-Based Process Model for Managing Complex Design Projects, IEEE Transactions on Engineering Management, 2005, Vol. 52, No. 3, pp. 316–28.
[22] G. M. Hoedemaker, J. D. Blackburn, Van L. N. Wassenhove, Limits to Concurrency, Decision Sciences, 1999, Vol. 30, No. 1, pp. 1–18.
[23] F. Romli, M. Y. Harmin, Use of Monte Carlo method to estimate subsystem redesign risk for complex products: aircraft redesign case study. Renuganth Varatharajoo P, editor, Aircraft Engineering and Aerospace Technology, 2015, Vol. 87, No. 6, pp. 563–70.
[24] B. Soltanmohammad, S. M. Malaek, A new method for design cycle period management in aircraft design process, Aircraft Engineering and Aerospace Technology, 2008, Vol. 80, No. 5, pp. 497–509.
[25] R. Xiao, T. Chen, W. Chen, A new approach to solving coupled task sets based on resource balance strategy in product development, International Journal of Materials and Product Technology, 2010, Vol. 39, No. 3/4, p. 251.
[26] Y. Bassil, A Simulation Model for the Waterfall Software Development Life Cycle, 2012, http://arxiv.org/abs/1205.6904 (accessed Dec 31, 2018).
[27] F. AitSahlia, E. Johnson, P. Will, Is concurrent engineering always a sensible proposition? IEEE Transactions on Engineering Management, 199, Vol. 542, No. 2, pp. 166–70.
[28] J. F. Maier, D. C. Wynn, W. Biedermann, U. Lindemann, P. J. Clarkson, Simulating progressive iteration, rework and change propagation to prioritise design tasks, Research in Engineering Design, 2014, Vol. 25, No. 4, pp. 283–307.
[29] H. S. Yan, B. Wang, D. Xu, Z. Wang, Computing Completion Time and Optimal Scheduling of Design Activities in Concurrent Product Development Process, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2010, Vol. 40, No. 1, pp. 76–89.
[30] Z. Wang, H. S. Yan, Optimizing the Concurrency for a Group of Design Activities, IEEE Transactions on Engineering Management, 2005, Vol. 52, No. 1, pp. 102–18.
[31] I. Cook, G. Coates, Optimising the time-based design structure matrix using a divide and hybridise algorithm, Journal of Engineering Design, 2016, Vol. 27, No. 4–6, pp. 306–32.
[32] X. Li, Y. Lei, W. Wang, W. Wang, Y. Zhu, A DSM-based multi-paradigm simulation modeling approach for complex systems, In IEEE 2013, pp. 1179–90.
[33] M. Haji Jafari, Improving Design Process of Aerospace Systems by Dynamic Modeling in State-Space, Phd Dissertation, Tehran, 2017.
[34] K. Ogata, Modern control engineering, 5th ed. Boston: Prentice-Hall, 2010, p. 894, Prentice-Hall electrical engineering series, Instrumentation and controls series.
[35] A. Royal Navy Merlin helicopter. http://www.deagel.com/ (accessed 12 Nov 2017).
[36] A. Chenarani, E. A. Druzhinin, D. N. Kritskiy, Simulating the Impact of Activity Uncertainties and Risk Combinations in R&D Projects, Journal of Engineering Science and Technology Review, 2017, Vol. 10, No. 4, pp. 1-9.