تخمین برخط مقاوم اغتشاشات مداری با استفاده از تئوری مدلغزشی مرتبة 2 برای یک ماهواره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشجوی دکتری / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشجوی کارشناسی ارشد / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

استفاده از اغتشاشات مداری در طراحی سیستم‌های کنترلی سامانه‌های فضایی، تاکنون توسط محققان بسیاری بررسی شده است. از جمله روش‌های کارآمد برای تخمین اغتشاشات مداری استفاده از دینامیک معکوس است که در آن با استفاده از معادلات دینامیکی و جایگزینی مقادیر اندازه‌گیری با متغیرهای معادلات دینامیکی، گشتاورهای اغتشاشی تخمین زده می‌شوند. چالش اصلی در استفاده از روش دینامیک معکوس، محاسبة مقادیر مشتق متغیرهای وضعیت ماهواره در حالت اندازه گیری‌های نوفه‌دار است‌که سبب افزایش تأثیر نوفه بر کیفیت تخمین می‌شود. فرضیات در نظر گرفته شده برای برطرف ساختن این چالش، در روش‌های ارائه‌شدة پیشین سبب کاهش دقت تخمین شده است. در این مقاله از الگوریتم مدلغزشی مرتبة دوم برای محاسبة مشتق خروجی‌های نوفه‌دار استفاده می‌گردد. طراحی مشتق‌گیر ارائه‌شده به‌گونه‌ای انجام می‌پذیرد که با قرارگرفتن بردار خطای اندازه‌گیری روی صفحة لغزش و مستقل‌شدن از نوفة اندازه‌گیری، مشتق‌گیری در محیطی مستقل از نوفه انجام می‌پذیرد. با بررسی نتایج شبیه‌سازی تخمین اغتشاشات مداری، عملکرد مناسب این روش برای تخمین گشتاورهای اغتشاشی در مدار نسبت به روش‌های دیگر تأیید می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robust online perturbation estimation using second–order sliding mode theory for an earth-orbiting spacecraft

نویسندگان [English]

  • Jafar Roshanian 1
  • AbdolMajid Khoshnood 1
  • Mehdi Hasani 2
  • Ehsan Hasani 3
چکیده [English]

Several methods for perturbation estimation can be found in the literatures. The dynamic Inversion technique is a well-known technique to estimate perturbation in the noisy environment. The main idea in the dynamic inversion techniques is replacing the measurement output by state variables in the dynamic equation. The problem with implementing the dynamic inversion method is that it might be difficult to construct the derivative output from noisy measurement. In this paper, a second order sliding mode differentiator and super twisting algorithm is applied for obtaining the derivative of noisy measurement signal. For this purpose, after the measurement noise has been approaches to sliding surface, the measurement output has been decoupled from noisy environment and it is possible to extract derivatives of measurement signal in a noise-free environment. The proposed method is evaluated to estimate the space perturbation in the presence of measurement noise. The advantages of the proposed method in comparison with other methods are illustrated through simulations.

کلیدواژه‌ها [English]

  • Spacecraft
  • orbital perturbation
  • sliding mode theory
  • dynamic inversion

[1] J. R. Wertz, D. F. Everett, J. J. Puschell, Space mission engineering: the new SMAD. Space technology library, Vol. 28, 2011.

[2] J. George, J. L. Crassidis, Sensitivity Analysis of Disturbance Accommodating Control with Kalman Filter Estimation, In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.

[3] I. D. Landau, M. Alma, A. Constantinescu, J. J. Martinez, M. Noë, Adaptive regulation-rejection of unknown multiple narrow band disturbances (a review on algorithms and applications), Control Engineering Practice ,Vol. 19, pp. 1168-1181, 2011.

[4] D. Hyland, L. Davis, A. Das, G. Yen, Autonomous neural control for structure vibration suppression, In AIAA Guidance, Navigation and Control Conference, Paper No. AIAA-96-3923, 1996.

[5] S. Ulrich, J. Côté, J. D. Lafontaine, In-flight attitude perturbation estimation for earth-orbiting spacecraft, The Journal of the Astronautical Sciences, Vol. 57, No. 3, pp. 633-665, 2009.

[6] C. Y. Kim, S. M. Yoon, M. C. Lee, B. H. Kang, A study on state and perturbation observers of the controller of surgical robot instrument, In Control Conference (ASCC), pp. 553-557, 2011.

[7] S. J. Kwon, Robust Kalman Filtering with Perturbation Estimation Process-for Uncertain Systems, Journal of Institute of Control, Robotics and Systems, Vol. 12, No. 3, pp. 201-207, 2006.

[8] Y. Li, Q. Xu, Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator, IEEE Transactions on Control Systems Technology, Vol. 18, No. 4, pp. 798-810, 2010.

[9] C. S. Liu, H. Peng, Disturbance observer based tracking control, Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 2, pp. 332-335, 2000.

[10] J. Yang, S. Li, C. Sun, L. Guo, Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles, IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, pp. 1263-1275, 2013.

[11] G. Bartolini, A. Pisano, E. Punta, E. Usai, A survey of applications of second-order sliding mode control to mechanical systems, International Journal of Control, Vol. 76, No. 9-10, pp. 875-892, 2003.

[12] W. B. Lin, H. K. Chiang, Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive, Mathematical Problems in Engineering, 2013.

[13] T. Kobayashi, D. L. Simon, J. S. Litt, Application of a constant gain extended Kalman filter for in-flight estimation of aircraft engine performance parameters, In ASME Turbo Expo 2005: Power for Land, Sea, and Air, pp. 617-628, 2005.

[14] W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. O'Reilly, A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics, Vol. 47, No. 4, pp. 932-938, 2000.

[15] A. Levant, Robust exact differentiation via sliding mode technique, Automatica, Vol. 34, No. 3, pp. 379-384, 1998.