بررسی تحلیلی عملکرد الگوریتم‌های فرا ابتکاری بر بهینه‌سازی عملکرد کنترلر پهپاد چهارروتوره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده فنی و مهندسی، دانشگاه اصفهان

2 دانشجوی کارشناسی ارشد / دانشکده فنی و مهندسی، دانشگاه اصفهان

چکیده

با توجه به مدل دینامیکی غیرخطی و کوپل پهباد چهارروتوره، طراحی کنترلر برای آن با تعداد زیادی از پارامترهای طراحی به‌هم وابسته درگیر است. در این مقاله کاربرد الگوریتم‌های فرا ابتکاری برای طراحی و بهینه‌سازی پارامترهای کنترلر PID برای پهباد چهارروتوره بررسی شده است. برای این منظور سه روش بهینه‌سازی ازدحام ذرات، جستجوی هارمونی و الگوریتم ژنتیک انتخاب شده است. روش ازدحام ذرات با بهینه‌سازی بهتر بهره‌های کنترلی، در نهایت با کاهش بیشتر تابع هزینه نسبت به سایر الگوریتم های تکاملی پاسخ مناسب‌تری می‌دهد. یک مجموعة آزمایشگاهی دو درجه آزادی شامل حسگرهای شتاب‌سنج و ژیروسکوپ به‌همراه میکروکنترلر برای پیاده‌سازی کنترلر زاویه‌ای PID طراحی و ساخته شده است. با توجه به اینکه داده‌های آزمایشگاهی خطا و نوفه دارند، از فیلتر کالمن برای کاهش نوفة حسگر استفاده شده است. در نهایت استفاده از فیلتر کالمن برای فیلتر داده‌های آزمایشگاهی به کنترل زاویه‌ای مناسب مجموعه منجر شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical study of metaheuristic algorithms on optimization of contorollers in quadrotor drones

نویسندگان [English]

  • Hamed Shahbazi 1
  • Vahid Tikani 2
چکیده [English]

Quadrotor is a flying robot with six degrees of freedom which can do vertical flight and complex maneuvers. Since the robot has nonlinear and coupled dynamic model, designing a controller with desired performance involves a large number of interdependent design parameters. The application of meta-heuristic algorithms for PID controller design and adjusting the gain values of the controller is presented in the paper. Therefor three meta-heuristic algorithms have been used for optimal tuning of PID parameters. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Harmony Search (HS) are compared in minimizing the performance criteria formula that can result a better performance for controlling of quadrotor. Finally the PSO algorithm could reduce the cost function more than other evolutionary algorithms and provides suitable answers. To study the performance of PID controller on attitude control of the system, a quadrotor is installed to the designed stand. The system consists of accelerometer and gyroscope sensors and a microcontroller which is used to design PID attitude controller for the quadrotor. Considering that the experimental data has lots of errors and noises, Kalman filter is used to reduce the noises. Finally using the Kalman filter leads to better estimation of the quadrotor angle position and the PID controller performs the desired motions successfully.

کلیدواژه‌ها [English]

  • Control
  • PID Controller
  • metaheuristic algorithms
  • quadrotor drones
  • Optimization

[1] S. Bouabdallah, R. Siegwart, G. Caprari, Design and control of an indoor coaxial helicopter, Proceedings of the International Conference on Intelligent Robots and Systems, pp. 2930-2935, 2006.

[2] P. Castillo, A. Dzul, R. Lozano, Real-time stabilization and tracking of a four-rotor mini rotorcraft, Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 510-516, 2004.

[3] J. Li, Y. Li, Dynamic analysis and PID control for a quadrotor, Proceedings of the International Conference on Mechatronics and Automation, pp. 573-578, 2011.

[4] B. Erginer, E. Altug, Modeling and PD control of a quadrotor VTOL vehicle, Proceedings of the Intelligent Vehicles Symposium, pp. 894-899, 2007.

[5] B. Erginer, E. Altug, Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle, International Journal of Control, Automation and Systems, Vol. 10, No. 1, pp.61-70, 2012.

[6] T. Sangyam, P. Laohapiengsak, W. Chongcharoen, I. Nilkhamhang, Path tracking of UAV using self-tuning PID controller based on fuzzy logic, Proceedings of the SICE Annual Conference, pp. 1265-1269, 2010.

[7] M. O. Efe, Neural network assisted computationally simple PI-D control of a quadrotor UAV, IEEE Transactions on Industrial Informatics, Vol. 7, No. 2, pp. 354-361, 2011.

[8] E. Altuğ, J. P. Ostrowski, C. J. Taylor, Control of a quadrotor helicopter using dual camera visual feedback, The International Journal of Robotics Research, Vol. 24, No. 5, pp. 329-341, 2005.

[9] D. Suter, T. Hamel, R. Mahony, Visual servo control using homography estimation for the stabilization of an x4-flyer, Proceedings of the 41st IEEE Conference on decision and control, Vol. 3, pp. 2872-2877, 2002.

[10] J. Dunfied, M. Tarbouchi, G. Labonte, Neural network based control of a four rotor helicopter, Proceedings of the International Conference on Industrial Technology, Vol. 3, pp. 1543-1548, 2004.

[11] M. G. Earl, R. D. Andrea, Real-time attitude estimation techniques applied to a four rotor helicopter, Proceedings of the 43rd IEEE Conference on Decision and Control, 2004.

[12] D. Lee, H. J. Kim, S. Sastry, Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter, International Journal of Control, Automation and Systems, Vol. 7, No. 3, pp. 419-428, 2009.

[13] B. Erginer, E. Altuğ, Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle, International Journal of Control, Automation and Systems, Vol.10, No. 1, pp. 61-70, 2012.

[14] A. Sharma, P. A. Barve, Controlling of quad-rotor uav using PI-D controller and fuzzy logic controller, International Journal of Electrical, Electronics and Computer Engineering, Vol. 1, No. 2, pp. 38-41, 2012.

[15] L. X. Wang, A course in fuzzy systems and control: Desing of Fuzzy Systems from Input-Output Data, 1997.

[16] C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller. II, IEEE Transactions on systems, man, and cybernetics, Vol. 20, No. 2, pp. 419-435, 1990.

[17] L. Reznik, Fuzzy controllers handbook, first Edittion, Newnes, 1997.

[18] E. H. Kwun Fung, Y. Kwong Wong, Y. Ma, C. W. Marcus Yuen, W. Keung Wong, Smart hanger dynamic modeling and fuzzy controller design, International Journal of Control, Automation and Systems, Vol. 9, No. 4, pp. 691-700, 2011.

[19] A. Hafaifa, F. Laaouad, K. Laroussi, A numerical structural approach to surge detection and isolation in compression systems using fuzzy logic controller, International Journal of Control, Automation and Systems, Vol. 9, No. 1, pp. 69-79, 2011.

[20] M. Sugeno, Development of an intelligent unmanned helicopter, at the Fuzzy modeling and control, CRC Press, Boca Raton, 1999.

[21] B. Kadmiry, D. Driankov, Fuzzy control of an autonomous helicopter, Proceedings of the IFSA World Congress and 20th NAFIPS International Conference, pp. 2797-2802, 2001.

[22] C. Cavalcante, J. Cardoso, J. J. Ramos, O. R. Neves, Design and tuning of a helicopter fuzzy controller, Proceedings of the International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, Vol. 3, pp. 1549-1554, 1995.

[23] N. I. Vitzilaios, N. C. Tsourveloudis, An experimental test bed for small unmanned helicopters, Journal of Intelligent and Robotic Systems, Vol. 54, No. 5, pp. 769-794, 2009.

[24] R. D. Garcia, K. P. Valavanis, The implementation of an autonomous helicopter testbed, In Unmanned Aircraft Systems, pp. 423-454, Springer Netherlands, 2008.

[25] I. D. Cowling, J. F. Whidborne, A. K. Cooke, Optimal trajectory planning and LQR control for a quadrotor UAV, Proceedings of the International Conference on Control, Glasgow, UK, 2006.