طراحی و تحلیل تئوری – تجربی لولای فلکسچر یک سکوی تست سامانه پیشران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر

2 عضو هیات علمی / مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

در سکوهای تست شش‌مؤلفه‌ای، به‌کمک آرایشی از ستون‌های لودسل - فلکسچر، مؤلفه‌های نیرو و گشتاور بردار رانش یک سامانة پیشران اندازه‌گیری می‌شود. در این پژوهش، ابتدا ملاحظات اساسی در فرایند طراحی فلکسچر یک سکوی تست شش‌مؤلفه‌ای خاص ارائه شده است و پس از آن، فلکسچری با ساختار هندسی جدید جهت برآوردن این ملاحظات پیشنهاد می‌گردد. در ادامه به‌کمک قاعدة محاسباتی بهینه‌سازی چندبعدی مقید، ابعاد هندسی فلکسچر به‌دست می‌آید. در گام بعد، فلکسچر طراحی‌شده به‌کمک روش المان محدود تحلیل و نتایج با حل تحلیلی مقایسه می‌شود. به‌منظور صحه‌گذاری نتایج حاصل از تحلیل نظری، مقادیر فرکانس طبیعی و بار بحرانی کمانش فلکسچر به‌روش تجربی اندازه‌گیری می‌شود. با توجه به برآوردن همزمان تمامی ملاحظات طراحی و تطابق خوب بین نتایج تحلیل نظری و تجربی، طرح فلکسچر پیشنهادی انتخاب مناسبی برای استفاده در سکوی تست سامانة پیشران مدنظر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and theoretical - experimental analysis of a flexure pivot for a propulsion system test stand

نویسندگان [English]

  • Ali Reza Mokhtari 1
  • Masoud Mosayebi 2
  • Shahram Yousefi 2
چکیده [English]

By arrangement of flexure-load cell columns in the six-component test stands, the thrust vector components of force and moment of a propulsion system can be measured. In this research, the main considerations in the flexure design process of a six component test stand is introduced. Also, a Flexure with new geometric structure to take account of these considerations is proposed. Then, by using computational constrained multi-dimensional optimization of direct methods, geometrical dimensions of the flexure are calculated. In the next step, finite element analysis is carried out on designed flexure and its results are compared with results of the analytical solution. To validate the results of the theoretical solution, natural frequencies of the flexure and buckling critical loads are measured experimentally. Based on the acceptable correlation of the theoretical and experimental results, it can be said that the proposed flexure is a good choice for using in a propulsion system six - component test stand.

کلیدواژه‌ها [English]

  • Flexure
  • Optimization Design
  • Test Stand

[1] N. Gligorijević, S. Živković, S. Subotić, S. Kozomara, M. Nikolić, S. Čitaković, Side force determination in the rocket motor thrust vector control system, Scientific Technical Review, Vol. 63, No. 2, pp. 27-38, 2013.

[2] R. B. Runyan, J. P. Rynd, J. F. Seely, Thrust stand design principles, AEDC Group, Tennessee, AIAA-92-3976, 1992.

[3] D. P. Ankeney, C. E. Woods, Design criteria for large accurate solid-propellant static-thrust stands, No. NOTS-TP-3240, naval ordnance test station chna lake ca, 1963.

[4] C. Zhu, X. Xiaoli, The dynamic measurement of thrust misalignment in solid rocket motors based on load identification technique, Proceedings of the 9th International Conference on Electronic Measurement & Instruments, pp. 2-544, 2009.

[5] Z. N. Brimhall, J. P. Atkinson, D. R. Kirk, H. G. Peebles, Design of a novel six degree of freedom solid rocket motor test stand, Florida Institute of Technology, Melbourne, FL 32901, 2007.

[6] N. Lobontiu, Compliant mechanisms: design of flexure hinges, CRC press, 2002.

[7] C. Yang, Calculation and analysis of parabolic flexure hinge, Proceedings of the International Conference on Measurement, Information and Control (MIC), Vol. 1, pp. 5-8, 2012.

[8] M. Acer, A. Sabanovic, Comparison of circular flexure hinge compliance modeling methods, Proceedings of the International Conference on Mechatronics (ICM), pp. 271-276, 2011.

[9] M. A. Ramasmavi, F. S. Alvi, A. Krothapalli, Special 6-component jet rig balance for studying new thrust vectoring concepts, Proceedings of the International Congress on Instrumentation in Aerospace Simulation Facilities, 1997.

[10] S. S. Rao, Mechanical Vibration, 5th Edition, Prentice Hall, 2010.

[11] S. K. Jang, C. W. Bert, Free vibration of stepped beams: exact and numerical solutions, Journal of Sound and Vibration, Vol. 130, No. 2, pp. 342-346, 1989.

[12] M. A. Koplow, A. Bhattacharyya, B. P. Mann, Closed form solutions for the dynamic response of Euler–Bernoulli beams with step changes in cross section, Journal of Sound and Vibration, Vol. 295, No. 1, pp. 214-225, 2006.

[13] J. W. Jaworski, E. H. Dowell, Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment, Journal of Sound and Vibration, Vol. 312, No. 4, pp. 713-725, 2008.

[14] X. Wang, Y. Wang, Free vibration analysis of multiple-stepped beams by the differential quadrature element method, Applied Mathematics and Computation, Vol. 219, No. 11, pp. 5802-5810, 2013.

[15] S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability, New York: Mc-Graw Hill, 1961.

[16] A. R. Rahai, S. Kazemi, Buckling analysis of non-prismatic columns based on modified vibration modes, Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 8, pp. 1721-1735, 2008.

[17] S. B. Coşkun, M. Tarık Atay, Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method, Computers & Mathematics with Applications, Vol. 58, No. 11, pp. 2260-2266, 2009.

[18] S. C. Chapra, R. P. Canale, Numerical Methods for Engineers, 6th Edition,McGraw-Hill, 2009.

[19] A. S. Sarigül, G. Aksu, A finite difference method for the free vibration analysis of stepped Timoshenko beams and shafts, Mechanism and Machine Theory, Vol. 21, No. 1. pp.1-12, 1986.