بررسی حساسیت پارامترهای المان جاذب پوگو بر فرکانس طبیعی سامانه پیشران مایع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

پدیدة پوگو به‌عنوان یکی از ناپایداری‌های فرکانس پایین در سطح سیستم، در ماهواره‌برهای سنگین مطرح می‌باشد. این ناپایداری از برهم‌کنش فرکانسی میان دو زیرسیستم سازه و پیشرانش حاصل می‌گردد. به‌منظور جبران یا جلوگیری از رخداد این ناپایداری در سامانة ماهواره‌بر، از المانی که آثار برهم‌کنش فرکانسی این دو سیستم را کاهش می‌دهد استفاده می‌شود. این المان تحت عنوان جاذب نوسانات پوگو در ماهواره‌برها و با نام آکومولاتور شناخته می‌شود. در این مقاله با استفاده از مدلسازی دینامیکی المان‌های موتور (مخزن، مسیر تغذیة اصلی، آکومولاتور، مسیر تخلیه، پمپ و محفظة تراست) و در نظر گرفتن اتصال سازه به  موتور در دو نقطة مخزن و پمپ به بررسی آثار المان آکومولاتور بر فرکانس طبیعی سامانه پیشرانش پرداخته و ملاحظات مربوط به جانمایی و شرایط عملکردی این المان برای قرارگیری در مسیر تغذیة سامانة پیشرانش تعیین شده است. همچنین تحلیل حساسیت پارامترهای آکومولاتور بر فرکانس طبیعی کل سامانه پیشرانش انجام شده و نتایج نشان می‌دهد که قراردادن آکومولاتور نزدیک به مجموعة پمپ و در مسیر مکش منجر به کاهش فرکانس طبیعی سامانه پیشرانش می‌شود که به پایداری مجموعه ماهواره‌بر کمک می‌نماید. وقتی کامپلیانس و اینرتنس آکومولاتور افزایش پیدا می‌کند، اثرگذاری آکومولاتور بر فرکانس طبیعی سامانة پیشرانش قابل توجه خواهد بود. با توجه به تطابق نتایج تحلیل‌ها با نتایج یک مدل پروازی در شرایط حضور و عدم حضور این المان می‌توان گفت ایجاد یک مدل اولیه برای تخمین محل و طراحی مقدماتی المان آکومولاتور بخشی از دستاوردهای این مقاله به‌شمار می‌رود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity analysis of Pogo suppression element on liquid propellant engine natural frequency

نویسندگان [English]

  • Seyed Alireza Jalali Chimeh 1
  • Hassan Karimi Mazareh Shahi 2
1
2
چکیده [English]

Pogo phenomenon is one of the low frequency instabilities in heavy liquid propellant launch vehicles at the system level of design. This instability produced from frequency interaction between structure and propulsion systems. In order to suppression or prevention of occurrence of this phenomenon in vehicles, designers use a device, to separate or remove the effects of frequency interaction of these systems. This element is famed to Pogo oscillation damper or Accumulator in penumahydraulic maps of liquid propellant engines. In this paper by using of dynamic modeling of engine elements (propellant tank, main feed line, accumulator, discharge line, pump assembly and thrust chamber) considering of connection between engine and structure in tank and pump assembly points, discussed about the effects of accumulator on the natural frequency of propulsion system and it’s considerations of location and performance for being in the main feed line of propulsion system is explained. Also sensitive analysis of accumulator's parameters on the natural frequency of propulsion system evaluated and results show that installing an accumulator in suction line and close to the pump assembly can decrease natural frequency of propulsion system, which can improve the stability of vehicle system. The influence of accumulator on the natural frequency becomes more significant due to increases of accumulator’s compliance and inertance. According to the matching the sensitive analysis’s results with experimental data in presence and absence of accumulator, it can be said that presentation of primary model for determination of position and size of accumulator is one the research achievements.

کلیدواژه‌ها [English]

  • Pogo stability
  • longitudinal vibration
  • accumulator
  • liquid propellant engine
  • Dynamic simulation
[1] A. Rasumoff, R. Winje, The Pogo Phenomenon: Its Causes and Cure, Astronautical Research, Springer Netherlands, L. G. Napolitano, P. Contensou, W. F. Hilton, eds., pp. 307-322, 1973.
[2] S. Rubin, Prevention of Coupled Structure-propulsion Instability (POGO), National Aeronautics and Space Administration, 1970.
[3] S. Rubin, Analysis of Pogo Stability, Astronautical Research, L. G. Napolitano, P. Contensou and W. F. Hilton, eds., pp. 113-125: Springer Netherlands, 1973.
[4] K. McKenna, J. Walker, R. Winje, A model for studying the coupled engine - airframe longitudinal instability of liquid rocket systems, Aerospace Sciences Meeting, Aerospace Sciences Meetings: American Institute of Aeronautics and Astronautics, 1964.
[5] R. G. Rose, R. Harris, Dynamic analysis of a coupled structural/pneumatic system - longitudinal oscillation for atlas vehicles, 1st Annual Meeting, Annual Meeting: American Institute of Aeronautics and Astronautics, 1964.
[6] G. J. Payne, S. Rubin, Pogo Suppression on the Delta Vehicle, National Aeronautics and Space Administration, 1974.
[7] W. Qizheng, G. Wanyong, G. Yongchun, POGO Stability, reliability and parameters analysis, Journal of Vibration, No. 2, pp. 29-47, 1991.
[8] B. W. Oppenheim, S. Rubin, Advanced Pogo stability analysis for liquid rockets, Journal of Spacecraft and Rockets, Vol. 30, No. 3, pp. 360-373, 1993, 1993.
[9] J. Zhang, Q. Wang, Parameter Study on Pogo Stability of Liquid Rockets, Journal of Spacecraft and Rockets, Vol. 48, No. 3, pp. 537-541, 2011.
[10] K. W. Dotson, S. Rubin, S. Sako, Mission-Specific Pogo Stability Analysis with Correlated Pump Parameters, Journal of Propulsion and Power, Vol. 21, No. 4, pp. 619-626, 2005.
[11] D. Kirk, S. Rubin, S. Brian, Effects of Unsteady Pump Cavitation on Propulsion-Structure Interaction (Pogo) in Liquid Rockets, 45th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics & Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2004.
[12] G. P. Sutton, O. Biblarz, Rocket Propulsion Elements: Wiley, 2001.
[13] S. Rubin, Longitudinal Instability of Liquid Rockets due to Propulsion Feedback (POGO) Journal of Spacecraft and Rockets, Vol. 3, No. 8, pp. 1188-1195, 1966.