مطالعه عددی اثرات مشخصه های انژکتور توربین گاز بر طول نفوذ سوخت مایع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد / دانشگاه تربیت دبیر شهید رجایی، تهران،ایران

2 عضو هیات علمی / دانشگاه تربیت دبیر شهید رجایی، تهران،ایران

چکیده

در کار حاضر، انژکتور یک توربین گاز با استفاده از دینامیک سیالات محاسباتی شبیه ‌سازی‌ شده است. طول نفوذ انژکتور توربین گاز در یک شرایط مشخص با نتایج تست آزمایشگاهی اعتبار سنجی شده است. سپس، اثرات نوع مدل آشفتگی، پارامترهای پاشش روی طول نفوذِ سوخت در اثر تغییر فشار پاشش، زاویه مخروط پاشش، فشار و دمای محفظه احتراق بررسی گردیده است. مقدار سوخت تبخیر شده در دماهای مختلف و عرض جت سوخت در فشارهای پاشش مختلف به عنوان نوآوری مقاله ارائه شده است. نتایج نشان داد که افزایش فشار پاشش سبب افزایش طول نفوذ و عرض جت سوخت شده و همچنین با بزرگ‌تر شدن زاویه مخروط پاشش و افزایش فشار محفظه احتراق، طول نفوذ کاهش یافته است. با افزایش دمای محیط از300 تا 450 کلوین، جرم سوخت تبخیر شده با افزایش همراه بوده است. عرض جت سوخت در اثر 2، 3 و 4 برابر شدن فشار پاشش، افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical study of the effects of gas turbine injector characteristics on the penetration length of liquid fuel

نویسندگان [English]

  • Saeed Kazemi Seresht 1
  • arash mohammdi 2
1 Heat and Fluids, Mechanics, Shahid Rajaee Teacher Training, Tehran, Iran
2 Heat and Fluids, Mechanics, Shahid Rajaee Teacher Training, Tehran, Iran
چکیده [English]

In the present work, the injector of a gas turbine is simulated using computational fluid dynamics. The penetration length of the injector under certain conditions has been validated by the results of laboratory tests. Then, the effects of turbulence model type, spray parameters on fuel penetration length due to change of spray pressure, spray cone angle, pressure, and temperature of the combustion chamber are investigated. The amount of evaporated fuel at different temperatures and the jet width of the fuel at different spray pressures is presented as an innovation of the paper. The results showed that increasing the injection pressure increased the penetration length and jet width of the fuel and also with increasing the spray cone angle and increasing the combustion chamber pressure, the penetration length decreased. With increasing ambient temperature from 300 to 450 K, evaporated mass of the fuel has increased. The jet width of the fuel is increased by 2, 3, and 4 times the spray pressure.

کلیدواژه‌ها [English]

  • Gas turbine injector
  • spray characteristics
  • penetration length
  • liquid fuel
[1] H. Hiroyasu and M. Arai, Structures of fuel sprays in diesel engines, SAE transactions, p. 1050-1061, 1990.
[2] J.D. Naber and D.L. Siebers, Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE transactions, p. 82-111, 1996.
[3] M. Weclas, Some fundamental observations on the diesel jet destruction and spatial distribution in highly porous structures, Journal of porous media, 2008. 11(2).
[4] I. Roisman, L. Araneo, and C. Tropea, Effect of ambient pressure on penetration of a diesel spray, International journal of multiphase flow, 33(8): p. 904-920, 2007.
[5] V. Sepret, et al., Effect of ambient density and orifice diameter on gas entrainment by a single-hole diesel spray, Experiments in fluids, 49(6): p. 1293-1305, 2010.
[6] J. Zhu, O.A. Kuti, and K. Nishida, Effects of Injection Pressure and Ambient Gas Density on Fuel-Ambient Gas Mixing and Combustion Characteristics of DI Diesel Spray, SAE Technical Paper, 2011.
[7] J. Zhu, O.A. Kuti, and K. Nishida, An investigation of the effects of fuel injection pressure, ambient gas density and nozzle hole diameter on surrounding gas flow of a single diesel spray by the laser-induced fluorescence–particle image velocimetry technique, International Journal of Engine Research, 14(6): p. 630-645, 2013.
[8] H. Nowruzi, P. Ghadimi, and S. Mirsalim, Numerical study of effect of ambient backpressure and temperature on spray characteristics of heavy fuel oil/n-butanol blend, The Journal of Engine Research, 31(31): p. 43-53, 2013. (in Persian)
[9] V. Raju and S.S. Rao, Effect of fuel injection pressure and spray cone angle in DI diesel engine using CONVERGETM CFD code, Procedia Engineering, 127: p. 295-300, 2015.
[10] M. Yousefifard, P. Ghadimi, and H. Nowruzi, Numerical investigation of the effects of chamber backpressure on HFO spray characteristics, International Journal of Automotive Technology, 16(2): p. 339-349, 2015. (in Persian)
[11] M. Maher, et al., CFD Modeling of Spray Formation in Diesel Engines, Athens Journal of Technology and Engineering, 2017.
[12] H. Nowruzi, et al., Prediction of impinging spray penetration and cone angle under different injection and ambient conditions by means of CFD and ANNs, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10): p. 3863-3880, 2017.
[13] A.R. Andsaler, et al. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine, in Journal of Physics: Conference Series IOP Publishing, 2017.
[14] M. Hawi, et al., Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels, Fuel, 254: p. 115674, 2019.
[15] C. Baumgarten, Mixture formation in internal combustion engines, 2006.
[16] H. Mohammadi, et al., Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling like guides, Fuel, 196: p. 419-430, 2017.
[17] B.K. Kim, et al., Modeling of water-spray application in the forced dispersion of LNG vapor cloud using a combined eulerian–lagrangian approach, Industrial & engineering chemistry research, 51(42): p. 13803-13814, 2012.
[18] X. Jiang, et al., Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays, Progress in energy and combustion science, 36(2): p. 131-167, 2010.
[19] R. Klein-Douwel, et al., Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector, Energy & Fuels, 23(4): p. 1832-1842, 2009.
[20] R. Klein-Douwel, et al. Gas density and rail pressure effects on diesel spray penetration from a heavy-duty common rail injector, in Proceedings of the 6th International Symposium: Towards Clean Diesel Engines, Italy, 2007.
[21] H. Nowruzi, P. Ghadimi, and M. Yousefifard, A numerical study of spray characteristics in medium speed engine fueled by different HFO/n-butanol blends, International Journal of Chemical Engineering, 2014.
[22] J.C. Beale and R.D. Reitz, Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model, Atomization and sprays, 1999.
[23] T. Su, et al., Experimental and numerical studies of high pressure multiple injection sprays, SAE transactions, p. 1281-1292, 1996.
[24] Y. Wang, H.-W. Ge, and R.D. Reitz, Validation of mesh-and timestep-independent spray models for multi-dimensional engine CFD simulation, SAE International Journal of Fuels and Lubricants, 3(1): p. 277-302, 2010.
[25] R.D Reitz. and R. Diwakar, Effect of drop breakup on fuel sprays, SAE transactions, p. 218-227, 1986.
[26] R.D. Reitz and R. Diwakar, Structure of high-pressure fuel sprays, SAE transactions, p. 492-509, 1987.
[27] V.G.e. Levich, Physicochemical hydrodynamics, 1962.
[28] ANSYS, ANSYS FLUENT, User’s Manual, Release 19.1, 2019.
[29] CMT-Motores Térmicos. Universitat Politècnica de València. Camino de Vera, s/n 46022 Valencia (Spain) Getting here, Web: https://www.cmt.upv.es/.