طراحی و تحلیل عددی یک مبدل حرارتی پوسته لوله پره‌گذاری‌شده برای کاربرد در موتور یک بالگرد خاص

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشگاه امام علی (ع)، تهران، ایران

2 عضو هیات علمی / دانشکده مهندسی، دانشگاه امام علی، تهران، ایران

3 دانشجوی کارشناسی ارشد / دانشکده مهندسی مکانیک، دانشگاه صنعتی قم

چکیده

برخی هلیکوپترهای ارتش ایران که سال‌هاست استفاده می‌شود و فرسوده شده‌است، نیاز به تعمیر یا تعویض برخی قطعات آن را دارد. از جمله مبدل حرارتی که در این مقاله به صورت پوسته و لوله برای انتقال حرارت بین دو سیال مختلف که در هلیکوپترها، پهپادها و هواپیماها استفاده می‏شود، به‌صورت سه‏بعدی شبیه‏سازی شده‌است. سیال جاری در پوسته، روغن MIL-PRF 23699 و سیال جاری در لوله‏ها، سوخت JP-4 است. در این پروژه لوله‌ها به‌صورت U شکل و پره‌دار طراحی شدند تا انتقال حرارت بیشتری ایجاد شود و با استفاده از نرم‌افزار Aspen طراحی به گونه‌ایی انجام‌شده که طول کمتر و وزن کمتری داشته باشد تا وزن و ابعاد مبدل حرارتی مورداستفاده در هلیکوپتر کمتر و راندمان بالاتری داشته باشد. در این شبیه‏سازی‏ اثر تغییر هندسه لوله‏ها، دبی جرمی سوخت و روغن بر پارامترهای انتقال حرارت و هیدرولیکی مبدل بررسی‌شده‌است. لوله‏های انتخاب‌شده برای مبدل حرارتی شامل دو نوع بدون پره و پره‏دار می‌باشد و طراحی این نوع لوله‌های پره‌دار با سایر کارها متمایز شده‌ست. نتایج حاصل از این شبیه‏سازی نشان می‏دهد که نرخ انتقال حرارت بین سوخت و روغن برای مبدل حرارتی با لوله‏های پره‏دار(7400وات)، حدود 12 درصد بیشتر از حالت بدون پره(6600وات) است. همچنین کاهش دبی جرمی روغن واردشده به پوسته موجب افزایش بازدهی مبدل حرارتی می‏شود. نتایج این شبیه‏سازی‏ می‏تواند برای طراحی مبدل‏های حرارتی پوسته و لوله با ظرفیت‏های مختلف استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical design and analysis of a shell & finned tube heat exchanger for use in the engine of a special helicopter

نویسندگان [English]

  • Mohsen Rostami 1
  • Amirhamzeh Farajollahi 2
  • morteza ghanbari 3
1 Imam Ali university, Tehran, Iran
2 department of engineering, imam ali university, tehran, iran
3 Department of mechanical engineering, Qom university of technology
چکیده [English]

In this paper, a shell and tube heat exchanger used to transfer heat between two different fluids is simulated in three dimensions.This converter consists of a shell with 90 U-shaped tubes inside.For further heat transfer, the tubes were simulated and compared once without fins and again with fins, which are produced longitudinally and integrally with the tube body.The current flowing in the shell is MIL-PRF23699 oil and the flowing fluid in the tubes is JP-4 fuel.These two fluids flow in separate and opposite directions and exchange heat with each other through contact with the surface of the tubes. Using Aspen software, the design is done in such a way that the heat exchanger has a shorter length and weight to have a better and higher effect on the efficiency of the helicopter.To investigate the effect of tube geometry and oil mass flow on the rate of heat transfer between fuel and oil, simulation has been performed in ANSYSFluent program.In this simulation, a part of the whole heat exchanger is selected as the geometry and the effect of changing the geometry of the tubes, mass flow of fuel and oil on the heat transfer coefficient, Colburn coefficient, coefficient of friction and their ratio, and outlet temperature changes are investigated.The results of this simulation show that the heat transfer rate between fuel and oil for a heat exchanger with finned tubes is about11%higher than without a fin.Also,reducing the mass flow of oil entering the shell increases the efficiency of the heat exchanger.

کلیدواژه‌ها [English]

  • shell and tube heat exchanger
  • Colburn factor
  • Heat Transfer
  • Fin tube
  • friction factor
[1] G. Rago, Concentric fuel/oil filters and heat exchanger package, Google Patent, 2001.
[2] D.N. Burr, and et al., Fuel and oil heat management system for a gas turbine engine, Google Patents, 1988.
[3] H. Li, and V. Kottke, Effect of the leakage on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement. International Journal of Heat and Mass Transfer, 41(2): p. 425-433, 1998.
[4] K. Leoug, K. Toh, and Y. Leong, Shell and tube heat exchanger design software for educational applications. International Journal of Engineering Education, 14(3): p. 217-224, 1998.
[5] A. Cavallini, and et al., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. International Journal of Refrigeration, 23(1): p. 4-25, 2000.
[6] P. Naphon, Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer, 34(3): p. 321-330, 2007.
[7] K. Kawaguchi, K. Okui, and T. Kashi, Heat transfer and pressure drop characteristics of finned tube banks in forced convection (comparison of the heat transfer characteristics  between spiral fin and serrated). Heat Transfer-Asian Research: Co‐sponsored bythe Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 34(2): p. 120-133, 2005.
[8] R. Selbaş, Ö. Kızılkan, and M. Reppich, A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chemical Engineering and Processing: Process Intensification, 45(4): p. 268-275, 2006.
[9] M. Fesanghary, E. Damangir, and I. Soleimani, Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering, 29(5-6): p. 1026-1031, 2009.
[10] J.F. Zhang, and Y.-L.H. Wen-Quan Tao, 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles – Part II: Simulation results of periodic model and comparison between continuous and noncontinuous helical baffles. International Journal of Heat and Mass Transfer, 2009.
[11] E. Ozden, and I. Tari, Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conversion and Management, 51(5): p. 1004-1014, 2010.
[12] S. Ju, B. Lee, and A. Logan, Dual channel regulated fuel-oil heat exchanger. Google Patents, 2011.
[13] A.A. Abd, and S.Z. Naji, Analysis study of shell and tube heat exchanger for clough company with reselect different parameters to improve the design. Case studies in thermal engineering, 10: p. 455-467, 2017.
[14] H. Chen, and et al., Experimental investigation of heat transfer and pressure drop characteristics of H-type finned tube banks. Energies, 7(11): p. 7094-7104, 2014.
[15] B. Hagshenas, and S.H. Light, Combination fuel-oil and air-oil heat exchanger, Google Patents, 2015.
[16] M. Kim, M.Y. Ha, and J.K. Min, A numerical study on various pin–fin shaped surface air–oil heat exchangers for an aero gas-turbine engine. International Journal of Heat and Mass Transfer, 93: p. 637-652, 2016.
[17] A.S. Ambekar, and et al., CFD simulation study of shell and tube heat exchangers with different baffle segment configurations. Applied Thermal Engineering, 108: p 999-1007. 2016.
[18] M.E.H. Sennoun, Method and system for a combined air-oil cooler and fuel-oil cooler heat exchanger. Google Patents, 2017.
[19] X. Wang, and et al., Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles. International Journal of Heat and Mass Transfer, 124: p. 247-259, 2018.
[20] E.K. Stearns, J.A. Glahn, and D.J. McKaveney, Gas turbine engine with geared turbofan and oil thermal management system with unique heat exchanger structure. Google Patents, 2018.
[21] H. Turcotte, K. Ng, and J. Dubreuil, Heat exchanger for gas turbine engines. Google Patents, 2018.
[22] S.S. Yogesh, and et al., Heat transfer and pressure drop characteristics of inclined elliptical fin tube heat exchanger of varying ellipticity ratio using CFD code. International Journal of Heat and Mass Transfer, 119: p. 26-39, 2018.
[23] P. Wang, and et al., An investigation of influence factor including different tube bundles on inclined elliptical fin-tube heat exchanger. International Journal of Heat and Mass Transfer, 142: p. 118448, 2019.
[24] E.M. El-Said, and M. Abou Al-Sood, Shell and tube heat exchanger with new segmental baffles configurations: a comparative experimental investigation. Applied Thermal Engineering, 150: p. 803-810, 2019.
[25] M.H. Mohammadi, and et al., Thermal optimization of shell and tube heat exchanger using porous baffles. Applied Thermal Engineering, 170: p. 115005, 2020.
[26] S. Unger, and et al., An experimental investigation on the air-side heat transfer and flow resistance of finned short oval tubes at different tube tilt angles. International Journal of Thermal Sciences, 140: p. 225-237, 2019.
[27] S. Unger, and et al., Thermal and flow performance of tilted oval tubes with novel fin designs. International Journal of Heat and Mass Transfer, 153: p. 119621, 2020.
[28] D.N. Burr, and et al., Fuel and oil heat management system for a gas turbine engine. Google Patents, 1988.
[29] B.J. Keeler, and P.S. McCabe, Engine fuel-oil heat exchange system. Google Patents, 2020.
[30] N.E. Mastrocola, and M. Pess, Super-cooled heat exchanger of an air cycle machine. Google Patents, 2020.
[31] L.A. Ribarov, and L.J. Veilleux Jr, Multiple flow heat exchanger. Google Patents, 2020.
[32] P.a.W. Canada, PT6A-41 series engines Certificate Data Sheet, EASA, Editor, 2007.
[33] M. Jafari, A. Farajollahi, and H. Gazori, The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures. Journal of Thermal Analysis and Calorimetry, 1444: p. 167-178, 2021.