بررسی تاثیر افزودن نانو لوله های کربنی به دی‌الکتریک در فرآیند ماشینکاری تخلیه الکتریکی آلیاژ Ti-6Al-4V

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / دانشکده فنی، دانشگاه آزاد اسلامی واحد ملکان، ملکان، ایران

چکیده

ماشینکاری تخلیه الکتریکی یکی از فرآیندهای ماشینکاری غیرسنتی است، که کاربرد بسیار گسترده‌ای برای ماشینکاری فلزات و آلیاژهای با استحکام بالا که قابلیت ماشینکاری پایینی دارند، دارد. با توجه به ماهیت ترموالکتریکی این فرآیند، سلامت سطح پایین قطعات تولیدی با این روش، یکی از نقاط ضعف آن است. در این تحقیق برای ماشینکاری آلیاژ Ti-6Al-4v از روش ماشینکاری تخلیه الکتریکی با استفاده از نانو لوله‌های کربنی افزوده شده به دی-الکتریک استفاده شده استفاده است. متغیرهای ورودی شامل شدت جریان تخلیه، زمان روشنی پالس، دی‌الکتریک می‌باشد که تاثیر تغییرات آنها بر روی شکل پالس‌های خروجی، نرخ براده برداری، سایش نسبی ابزار، صافی سطح و لایه متاثر از حرارت بررسی شده است. نتایج نشان می‌دهد که افزودن نانو لوله‌های کربنی به دی‌الکتریک باعث کاهش پالس‌های غیر مفید شده و پالس‌های موثر در ماشینکاری را افزایش داده، باعث کاهش نرخ براده برداری شده و نرخ سایش نسبی ابزار را کم می‌کند. وجود نانو لوله‌های کربنی صافی سطح را به طور قابل توجهی بهبود داده و باعث کاهش لایه متاثر از حرارت می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of adding carbon nanotubes into the dielectric in the electrical discharge machining process of Ti-6Al-4V alloy

نویسنده [English]

  • Behnam Khosrozadeh
Faculty of engineering, Islamic Azad University Malekan Branch,Malekan, Iran
چکیده [English]

Electrical discharge machining is a non-traditional machining process, which is widely used for machining high-strength metals and alloys with low machinability. Due to the thermoelectric nature of this process, the poor surface integrity of the parts produced by this method is one of its weaknesses. In this research, the electric discharge machining method has been used for the machining of Ti-6Al-4V alloy using carbon nanotubes added to the dielectric. In this study, input variables include discharge current intensity, pulse duration, and dielectric; the effect of their changes on the shape of the output pulses, material removal rate, tool wear ratio, surface rouhness and heat affected layer has been investigated. The results show that the addition of carbon nanotubes to the dielectric reduces the harmful pulses and increases the effective pulses in machining, reduces the matrial removal rate and decrease the tool wear rate. The presence of carbon nano tubes significantly improves the surface quality and reduces the heat-affected layer.

کلیدواژه‌ها [English]

  • Electrical discharge machining
  • carbon nano tube
  • Ti-6Al-4V
  • heat-affected layer
[1] A.A. Khan, Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes, Journal of Material  Processing Technology, Vol. 39, pp. 482–487, 2008.
[2] S.S. Baraskar, S.S. Banwait, S.C. Laroiya, Multiobjective optimization of electrical discharge machining process using a hybrid method, Materials and Manufacturing Processes, Vol.28, pp. 348–354, 2013.
[3] A. Mohammadi, A.F. Tehrani, E. Emanian, D. Karimi, A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analysis. The roundness improvement in wire electrical discharge turning based on statistical analysis, The International Journal of Advanced Manufacturing Technology, Vol. 39, pp. 64–73, 2008.
[4] S. Tripathy, D.K. Tripathy, Optimization of process parameters and investigation on surface characteristics during EDM and powder mixed EDM, Innovative Design and Development Practices in Aerospace and Automotive Engineering, Vol. pp.385–391,2017.
[5] L. Dąbrowski, R. Świercz, J. Zawora, Struktura geometryczna powierzchni po obróbce elektroerozyjnej elektrodą grafitową i miedzianą – porównanie, Inżynieria Maszyn, Vol.16, pp.32–39, 2011.
[6] D. Oniszczuk, R. Świercz, An investigation into the impact of electrical pulse character on surface texture in the EDM and WEDM process, The International Journal of Advanced Manufacturing Technology, Vol. 36(3), pp.43–53 , 2012
[7] S. Chakraborty, V. Dey, S.K. Ghosh, A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precision Engineering, Vol. 40, pp.1–6, 2015.
[8] N. Mohri, N. Saito, M. Higashi, N. Kinoshita, A New Process of Finish Machining on Free Surface by EDM Methods, CIRP Annual, Vol. 40 (1), pp. 207–210, 1991.
[9] Y.S. Wong, L.C. Lim, I. Rahuman, W.M. Tee, Near-mirror-finish phenomenon in EDM using powder-mixed dielectric, The International Journal of Advanced Manufacturing Technology, Vol. 79, pp. 30– 40, 1998.
[10] A.A. Abdu Aliyu, A.M. Abdul-Rani, T.L. Ginta, C. Prakash, E. Axinte, M.A. Razak, S. Ali, A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants, Advances in Materials Science and Engineering, pp.1–23, 2017.
[11] H.K. Kansal, S. Singh, P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel, Journal of Manufacturing Processes, Vol.9 (1), pp.13– 22, 2007.
[12] K.L. Wu, B.H. Yan, F.Y. Huang, S.C. Chen, Improvement of surface finish on SKD steel using electro-discharge machining with aluminium and surfactant added dielectric, International Journal of Machine Tools and Manufacture, Vol. 45, pp.1195–1201, 2005.
[13] S. Assarzadeh, M. Ghoreishi, A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters, The International Journal of Advanced Manufacturing Technology, Vol. 64, pp. 1459–1477, 2013.
[14] A. Bhattacharya, A. Batish, N. Kumar, Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process, Journal of Mechanical Science and Technology, Vol. 27 (1), pp. 133–140, 2013.
[15] N. Ekmekci, B. Ekmekci, Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid, Materials and Manufacturing Processes, Vol. 31 (13), pp. 1663–1670, 2016.
[16] S. Prabhu, B.K. Vinayagam, Analysis of surface characteristics of AISI D2 tooم steel material using electric discharge machining process with single wall carbon nano tubes, IACSIT international journal of engineering and technology, Vol. 2(1), pp. 35–41, 2010.
[17] M.M. Sari, M.Y. Noordin, E. Brusa, Role of multi-wall carbon nanotubes on the main parameters of the electrical discharge machining (EDM) process, The International Journal of Advanced Manufacturing Technology, Vol. 68, pp.1095–1102, 2013.
[18] T. Jadam, S.K. Sahu, S. Datta, M. Masanta, EDM performance of Inconel 718 superalloy: application of multi‑walled carbon nanotube (MWCNT) added dielectric media, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol 41, pp.1-20, 2019.
[19] M. Danish,  M.A. Amin,  S. Rubaiee,  A. Majdi,  A. Rani, F.T.  Zohura, A. Ahmed, R. Ahmed, M.B. Yildirim, The International Journal of Advanced Manufacturing Technology, Vol.120, pp. 6125–6141, 2022
[20] T. Jadam, S. K. Sahu, S. Datta, M .Masanta, Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media, Indian Academy of Sciences,Vol. 45,135, pp.1-16, 2020.
[21] Gerd Lütjering, James C.Williams, Titanium, 2nd edition, Springer, 2007.
[22] A.K. Jagadeesan, K. Thangavelu, V. Dhananjeyan, Carbon Nanotubes: Synthesis, Properties and Applications, book chapter in 21st Century Surface Science - a Handbook, London: IntechOpen; 2020.
[23] W. S. Zhao, Q. G. Meng, Z. L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology, Vol. 129, No. 1-3, pp. 30-33, 2002.
[24] M. S. Han, B. K. Min, S. J. Lee, Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte, Journal of Materials Processing Technology, Vol. 191, No. 1-3, pp. 224–227, 2007.
[25] M.Shabgard, B. Khosrozadeh, Comparative study of adding nanopowders in dielectric effects on outputs and surface integrity of Ti-6Al-4V alloy in Electrical Discharge Machining, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 41-50, 2016 (in Persian).
[26] Y. Zhang, Y. Liu, Y. Shen, R. Ji, B. Cai, H. Li, et al., A review of the current understanding and technologyof powder mixed electrical discharge machining (PMEDM), In: IEEE international conference on mechatronics and automation, Chengdu, China 5–8 August, 2012, pp. 2240–2247.
[27] M.Shabgard,B. Khosrozadeh, Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process, Journal of Manufacturing Processes, Vol. 25, pp. 212-219, 2017.
[28] M.M. Sari, M.Y. Noordin, E. Brusa, Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes, In: International conference on structural nano composites (NANOSTRUC 2012), IOP Conf. Series: Materials Science and Engineering, 2012, p. 40.
[29] K. Y. Kung, J. T. Horng, K.T. Chiang, Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide, International Jpurnal of Advanced Manufacturing Technology, Vol. 40, No. 1, pp.95–104, 2009.
[30] H. Kumar, Development of mirror like surface characteristics using nanopowder mixed electric discharge machining (NPMEDM), International Journal of Advanced Manufacturing Technology, Vol. 76, No. 1-4,  pp. 105-113, 2015.
[31] P. Peças, E. Henriques, Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM), International Journal of Advanced Manufacturing Technology, Vol.  37, No. 11, pp. 1120–1132, 2008.
[32] Y. Wang, F. Zhao, Y. Liu, Behaviors of suspended powder in powder mixed EDM, Key Engineering Materials, Vol. 375-376, PP.36–41, 2008.