مطالعه تاثیر فرکانس عملگر جت مصنوعی در بهبود عملکرد آیرودینامیکی یک ایرفویل فوق بحرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل کارشناسی‌ارشد هوافضا / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

2 عضو هیات علمی / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

چکیده

هدف از این تحقیق استفاده از عملگر جت مصنوعی برای کنترل لایه مرزی با رویکرد بهبود عملکرد آیرودینامیکی ایرفویل فوق بحرانی NASA GAW-(2) در ناحیه پسا-واماندگی است. در تحقیق حاضر، حل معادلات ناویر-استوکس ناپایا در شرایط جریان آشفته و تراکم ناپذیر با استفاده از نرم‌افزار فلوئنت صورت گرفته است. در این پژوهش، عامل فرکانس تحریک به عنوان پارامتر اثرگذار بر کنترل جریان توسط عملگر جت مصنوعی مورد مطالعه قرار گرفته است. نتایج برای سه فرکانس بی‌بعد 1، 3 و 5 ارائه شده است. نتایج نشان داد که تحت تاثیر فرکانس بی‌بعد 5 بیشترین افزایش در ضریب برآ مربوط به زاویه حمله 18 درجه حاصل می‌شود که 10% نسبت به بیشینه برآی حالت غیرکنترلی افزایش یافته است. بیشترین کاهش در ضریب پسا نیز مربوط به فرکانس بی‌بعد 5 و زاویه حمله 20 درجه است که در این فرکانس، ضریب پسا 37% نسبت به حالت غیرکنترلی کاهش نموده است. در بهترین حالت کنترلی نقطه جدایش به اندازه 8/25 % طول وتر به تعویق افتاده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of the Effects of Excitation Frequency of Synthetic Jet Actuator on Aerodynamic Performance of a Supercritical Airfoil

نویسندگان [English]

  • Ehsan Najafi 1
  • Soheila Abdolahipour 2
  • Arash Shams Taleghani 2
1 MSc Graduate
2 Aerospace Research Institute
چکیده [English]

The purpose of this research is to use the artificial jet actuator to control the boundary layer with the approach of improving the aerodynamic performance of NASA GAW-2 supercritical airfoil in the post-stall region. In this research, unsteady Navier-Stokes equations were solved in turbulent and incompressible flow conditions using Fluent software. In this research, the excitation frequency factor has been studied as a parameter influencing the flow control by the artificial jet actuator. The results are presented for three dimensionless frequencies 1, 3 and 5. Under the effect of dimensionless frequency 5, the highest increase in the coefficient of attack was obtained for the angle of attack of 18 degrees, which has increased by 10% compared to the maximum for the uncontrolled state. The biggest decrease in the drag coefficient is related to the dimensionless frequency of 5 and the angle of attack of 20 degrees, in which the drag coefficient has decreased by 37% compared to the uncontrolled state. In the best control mode, the separation point is delayed by 25.8% of the chord length.

کلیدواژه‌ها [English]

  • Flow Control
  • Separation
  • Supercritical Airfoil
  • Synthetic Jet
  • Dimensionless Frequency
[1] A. S. Taleghani, A. Shadaram, M. Mirzaei, Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil. IEEE Transactions on Plasma Science 2012;40(5): 1434-1440.
[2] A. Salmasi, A. Shadaram, A. Shams Taleghani, Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack. IEEE Transactions on Plasma Science 2013; 41(10): 3079-3085.
[3] A. Shams Taleghani, A. Shadaram, M. Mirzaei, Effects of duty cycles of the plasma actuators on improvement of the pressure distribution over NLF0414 airfoil, Modares Mechanical Engineering, Vol. 12, No. 1, pp. 106-114, 2012. (in Persian)
[4] A. Salmasi, A. Shadaram, M. Mirzaei, A. Shams Taleghani, Numerical and experimental investigation on the effect of a plasma actuator on NLF0414 airfoils’ efficiency after the stall, Modares Mechanical Engineering, Vol. 12, No. 6, pp. 104-116, 2013. (in Persian)
[5] A. Shams Taleghani, A. Shadaram, M. Mirzaei, Experimental Investigation of Active Flow Control for Changing Stall Angle of a NACA0012 Airfoil Using Plasma-Actuator, Fluid Mechanics and Aerodynamics Journal, Vol. 1, pp. 89-97, 2012. (in Persian)
[6] M. Mohammadi, A. S. Taleghani, Active Flow Control by Dielectric Barrier Discharge to Increase Stall Angle of a NACA0012 Airfoil. Arab J Sci Eng, Vol. 39, pp. 2363–2370, 2014.
[7] M. Mirzaei, A. S. Taleghani A. Shadaram, Experimental study of vortex shedding control using plasma actuator, Applied Mechanics and Materials, Vol. 186, pp. 75-86, 2012. Trans Tech Publications Ltd.
[9] S. Abdolahipour, M. Mani, A. Shams Taleghani, Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator. Flow Turbulence Combustion, 109, 65–100, 2022. https://doi.org/10.1007/s10494-022-00327-9
[10] S. Abdolahipour, M. Mani, A. Shams Taleghani, Enhancing the high-lift properties of a supercritical wing by means of a modulated pulse jet actuator, Tech. Phys. Lett. (Berlin: Springer) in press, 2022. https://doi.org/10.21883/PJTF.2022.01.51869.18999
[11] S. Abdolahipour, M. Mani, A. Shams Taleghani, Experimental Investigation of Flow Control on a High-Lift Wing Using Modulated Pulse Jet Vortex Generator, Journal of Aerospace Engineering,(ASCE), Vol. 35, Issue 5, 2022, DOI: 10.1061/(ASCE)AS.1943-5525.0001463
[12] Soheila Abdolahi Poor; Abbas Mardani; Seyed Arash Seyed ShamsTaleghani. Effects of pulsed counter flow jets on aerothermodynamics performance of a Re-Entry capsule at supersonic flow, Aerospace Knowledge and Technology Journal, 5, 1, 2016, 55-65. (in Persian)
[13] M. Taeibi Rahni, A. Shams Taleghani, M. Sheikholeslam, G. Ahmadi, Computational simulation of water removal from a flat plate, using surface acoustic waves, Wave Motion, Volume 111, 2022, 102867, https://doi.org/10.1016/j.wavemoti.2021.102867.
[14] SM Sheikholeslam Noori, M. Taeibi Rahni, and SA Shams Taleghani, Numerical analysis of droplet motion over a flat plate due to surface acoustic waves, Microgravity Science and Technology, Vol. 32, no. 4, pp.647-660, 2020.
[15] M. Sheikholeslam Noori, A.Shams Taleghani, M. Taeibi Rahni, Surface acoustic waves as control actuator for drop removal from solid surface, Fluid Dynamics Research, Vol. 53, no. 4, 2021: 045503.
[16] M. Sheikholeslam Noori, A.Shams Taleghani, M. Taeibi Rahni, Phenomenological Investigation of Drop Manipulation Using Surface Acoustic Waves, Microgravity Science and Technology, Vol. 32, no. 6, pp.1147-1158, 2020.
[17] M. Sheikholeslam Noori, M. Taeibi Rahni, A.Shams Taleghani, Effects of contact angle hysteresis on drop manipulation using surface acoustic waves, Theoretical and Computational Fluid Dynamics, Vol. 34, no. 1 pp.145-162, 2020.
[18] A. ghanbari motlagh, S. abdolahipour, A. Shams taleghani, Flow control by magnetohydrodynamic field method at the supersonic air intake. Aerospace Knowledge and Technology Journal, 9(1), 2020, 157-170. (in Persian)
[19] A. Shams taleghani, A. ghanbari motlagh, S. abdolahipour, Numerical Study of the Effects of Magnetohydrodynamic Field on Shock-Induced Flow Separation, Fluid Mechanics and Aerodynamics Journal, 9(2), pp. 17-28, 2021. (in Persian)
[20] Ehsan Najafi; Arash Shams Taleghani; Soheila Abdolahipour. "Investigation of synthetic jet actuator position in delaying separation of a supercritical airfoil". Journal of Aeronautical Engineering, 24, 1, 2022, 83-96. doi: 10.22034/joae.2022.313705.1067  (in Persian)
[21] M. Yadegari; A. Seyed ShamsTaleghani, Porous Media Applications in Shock Attenuation on Suction side of an Airfoil, Aerospace Knowledge and Technology Journal, 3, 1, 2014, 61-71. (in Persian)
[22] M. Yadegari, A. Shams Taleghani, A Parametric Study for Passive Control of Shock-Boundary Layer Interaction of an Airfoil with Porous Media in a Transonic Flow, Fluid Mechanics and Aerodynamics Journal, Vol. 3,Number 4, pp.73-86, 2015. (in Persian)
[23] M. Yadegari, A. Shams Taleghani, Numerical Study of Shock-Boundary Layer Interaction on an Airfoil with Cavity and Porous Surface: Parametric Investigation in a Transonic Flow, Journal of Solid and Fluid Mechanics, Vol. 6, no. 2, pp. 271-284, 2016. (in Persian)
[24] A. S. Taleghani, A. Shadaram, M. Mirzaei, S. Abdolahipour, Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control, J Braz. Soc. Mech. Sci. Eng., Vol. 40, No. 4,  pp.1-13, 2018.
[25] S. Abdolahipour, M. Mani, A. Shams Taleghani, Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics. Physica Scripta, Vol. 96, No. 12, 2021.
[26] A. Shams Taleghani, A. Shadaram, M. Mirzaei, Experimental investigation of geometric and electrical characteristics by measurements of the induced flow, Modares Mechanical Engineering, Vol. 12, No. 5, pp. 132- 145, 2012. (in Persian)
[27] S. Abdolahipour, M. Mani, and P. M. Render, Numerical Investigation into the Aerodynamic Characteristics of Wings with Triangular Shape Damage in Different Span Positions.   15th Annual Conference of the CFD Society of Canada, CFD, pp. 27-31, 2007.
[28] S. Abdolahipour, M. Mani, and G. M. Ahmadi Dehaghi, Numerical and Experimental Study of the Influence of Damage on the Aerodynamic Characteristics of a Finite Wing. Fluids Engineering Division Summer Meeting, vol. 44403, pp. 1441-1447, 2011.
[29] Gad-el-Hak, M., Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press, 2000.
[30] Auerbach, D., “Experiments on the Trajectory and Circulation of the Starting Vortex”. J. Fluid MECH Vol. 183, pp. 185-198, 1987.
[31] Zaman, K., et al., “Effect of Acoustic Excitation on the Flow Over a Low Re Airfoil”, Journal of Fluid Mechanics, Vol. 182, pp. 127-148, 1987.
[32] Chang, R., Hsiao, F. and Shyu, R. “Forcing Level Effects of Internal Acoustic Excitation on the Improvement of Airfoil Performance”, Journal of Aircraft, Vol. 20, No. 5, pp. 823-829, 1992.
[33] Seifert, A. Bachar, T. Wygnanski, I., Koss, D. Shepshelovich, M., "Oscillatory Blowing, a Tool To Delay Boundary Layer Separation", AIAA Paper 93-0440 - presented at the 31st AIAA Aerospace Sciences Meeting, January 1993.
[34] Seifert, A., Darabi, A. and Wygnanski, I., "Delay of Airfoil Stall by Periodic Excitation", Journal of Aircraft, Vol. 33, No. 4, pp. 691-698, 1996.
[35] Smith, D.R., et al., "Modification of Lifting Body Aerodynamics Using Synthetic Jet Actuators", AIAA 1998-0209 - presented at the 36' Aerospace Sciences Meeting and Exhibit, Reno, NV, January 12-15, 1998.
[36] Amitay, M., and Glezer, A., “Role of actuation frequency in controlled flow reattachment over stalled airfoil”, AIAA Journal, Vol. 40, No. 2, 2002, pp. 209,216.
[37] Colonius, T., andWilliams, D. R., “Control ofVortex Shedding on Twoand Three-Dimensional Airfoils,” Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, Vol. 369, 2011, pp. 1349–1351.
[38] Amitay, M., and Glezer, A., “Role of Actuation Frequency in Controlled Flow Reattachment over Stalled Airfoil,” AIAA Journal, Vol. 40, No. 2, 2002, pp. 209–216.
[39] Glezer, A., Amitay, M., and Honohan, A., “Aspects of Low- and High- Frequency Actuation for Aerodynamic Flow Control,” AIAA Journal, Vol. 43, No. 7, July 2005, pp. 1501–1511.
[40] Visbal, M. R., “Strategies for Control of Transitional and Turbulent Flows Using Plasma-Based Actuators,” International Journal of Computational Fluid Dynamics, Vol. 24, No. 7, Aug. 2010, pp. 237–258.
[41] Visbal, M., Gaitonde, D., and Roy, S., “Control of Transitional and Turbulent Flows Using Plasma- Based Actuators,” 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, AIAA Paper 2006-3230, June 2006.
[42] Dandois, J., Garnier, E., and Sagaut, P., “Numerical Simulation of Active Separation Control by a Synthetic Jet,” Journal of Fluid Mechanics, Vol. 574, Mar 2007, pp. 25–58.
[43] Chaudhari M, Verma G, Puranik B, Agrawal A. Frequency response of a synthetic jet cavity. Experimental thermal and fluid science. 2009 Mar 1;33(3):439-48.
[44] Pamart PY, Dandois J, Garnier E, Sagaut P. Large Eddy Simulation study of synthetic jet frequency and amplitude effects on a rounded step separated flow. In5th Flow Control Conference 2010 Jun 28 (p. 5086).
[45] Goodfellow SD, Yarusevych S, Sullivan PE. Momentum coefficient as a parameter for aerodynamic flow control with synthetic jets. AIAA journal. 2013 Mar;51(3):623-31.
[46] Yen J, Ahmed N. Role of synthetic jet frequency & orientation in dynamic stall vorticity creation. In31st AIAA Applied Aerodynamics Conference 2013 (p. 3165).
[47] Kim M, Essel EE, Sullivan PE. Effect of varying frequency of a synthetic jet on flow separation over an airfoil. Physics of Fluids. 2022 Jan 19;34(1):015122.
[48] Zhiyong LI, Zhenbing LU, Qiang LI, Yan ZH. Modulation of driving signals in flow control over an airfoil with synthetic jet. Chinese Journal of Aeronautics. 2020 Dec 1;33(12):3138-48.
[49] Bottomley M, Packwood A. Experimental Investigation of High-Frequency-Actuation Synthetic Jet Flow Control. In52nd Aerospace Sciences Meeting 2014 (p. 0400).
[50] N. Durrani and B. A. Haider, "Study of stall delay over a generic airfoil using synthetic jet actuator," in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, p. 943.
[51] K. Mohseni and R. Mittal, Synthetic Jets: Fundamentals and Applications: CRC Press, 2014.
[52] F. Bauer, P. Garabedian, D. Korn and A. Jameson, supercritical wing sections II: a handbook vol. 108, Springer Science & Business Media, 2012.
[53] S. Abdolahipour, M. Mani and A. Shams Taleghani, “Experimental investigation of aerodynamic characteristics of a supercritical two-element high-lift airfoil,” Aerospace Knowledge and Technology Journal, vol. 10, no. 1, 2021. (in Persian)
[54] R. J. McGhee, W. D. Beasley, and D. M. Somers, "Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications," 1975.