به‌کارگیری رویکردهای محاسبات نرم برای توسعه یک رهیافت مهندسی همزمان در طراحی پیکره‌بندی یک پهپاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک‌اشتر، اصفهان

2 کارشناس ارشد / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک‌اشتر، اصفهان

3 دکتری / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک‌اشتر، اصفهان

چکیده

در این مقاله، یک رویکرد جامع ترجیح‌محور طراحی (CPD) ارائه می‌شود که دارای ساختاری دو مرحله‌ای بوده و از دو بهینه‌ساز تودرتو بهره می‌برد. در مرحله اول روش CPD، با بهره‌گیری از مفهوم رضایت، ترجیحات ذهنی طراح/مشتری در قالب روابط فازی به‌شکل شاخص‌های الزامی و آرمانی تعریف می‌گردند. در مرحله دوم تلاش می‌شود تا با تعریف یک معیار کارایی (کمینه‌سازی جرم کل سامانه) و تبیین پارامترهای نگرش، مصالحه‌های لازم در جهت برآورده ساختن ترجیحات طراح/مشتری به‌منظور دستیابی به یک طرح عملیاتی بهینه انجام پذیرد. روش مذکور در طراحی یک پهپاد با مداومت پروازی به مدت 24 ساعت، سرعت کروز حداقل 45 متر بر ثانیه، حمل محموله 200 کیلوگرمی و مسافت برخاست زیر یک کیلومتر پیاده‌سازی شده است. برای ارزیابی پاسخ‌های روش CPD، فرآیند طراحی پهپاد با استفاده از رویکرد MDO نیز انجام گرفته است. با اعمال رویکرد CPD بر طراحی مذکور، هواپیمای بدون سرنشینی طراحی گردید که نه‌تنها شاخص رضایت طراح/مشتری در آن بیشینه شد؛ بلکه مقدار جرم کلی آن نیز با کمترین اختلاف، بسیار نزدیک به مقدار به‌دست آمده در روش MDO با چارچوب AAO است. مقایسه نتایج نشان می‌دهد که علی‌رغم بیشتر بودن جرم پهپاد طراحی شده به روش CPD، رضایت سراسری این طرح بیشتر بوده و ترجیحات طراح/مشتری ارضا شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of soft computing methodologies for development of a concurrent engineering approach in design of UAV configuration

نویسندگان [English]

  • Hojat Taei 1
  • MehranAli Azizi 1
  • Mahmood Haghighat E. 2
  • S. MohammadReza Setayandeh 3
1 Assistant Professor, Mechanical Engineering Department, Malek Ashtar University of Technology, Iran
2 M. Sc, Mechanical Engineering Department, Malek Ashtar University of Technology, Iran
3 Ph. D, Mechanical Engineering Department, Malek Ashtar University of Technology, Iran
چکیده [English]

In a holistic design; Creating a common language between different engineering, taking in to account the designer/customer's interests and preferences, removing potential shortcomings of common design methodologies and taking full advantage of the benefits of MDO approaches are the most important factors for achieving logical and realistic results. In this paper, a novel Comprehensive Preference-based Design approach is presented which attempts to achieve subjective attributes that are defined in the concept of maximization of designer/customer's satisfaction in addition to objective goals which are formulated in the form of minimization of a performance criterion in a two-phase structure using two nested optimizers. In the first phase of CPD, using the concept of satisfaction, the subjective preferences of the designer/customer are defined in terms of fuzzy relationships and operators in the form of demands and desires. Whereas the results of this phase are inaccurate, in the second phase, it is attempted to define a performance criterion and in order to achieve an optimal operational plan, attitude parameters and the compromises needed to meet the designer/customer's preferences are implemented. The methodology is utilized to design of a UAV with flight duration of 24 hours, 45 m/s of cruise speed at least, payload of 200 kg and less than 1 km take-off distance. To evaluate the results of CPD, the design process using MDO in AAO framework is also performed. Comparison of the results shows that despite the higher mass of UAV designed by CPD, overall satisfaction is higher and preferences have been satisfied.

کلیدواژه‌ها [English]

  • comprehensive preference-based design (CPD)
  • UAV
  • performance criterion
  • satisfaction
  • fuzzy logic
  • optimization
[1] B. Cogan, Systems Engineering - Practice and Theory, Croatia: InTech Publication, 2012
[2] J. Roshanian, M. Ebrahimi, Latin hypercube sampling applied to reliability-based multidisciplinary design optimization of a launch vehicle. Aerospace Science and Technology. Vol. 28, No. 1, pp.297-304, 2013.
[3] W. Mason, "Analytic models for technology integration in aircraft design," in Aircraft Design, Systems and Operations Conference, 1990, p. 3262.
[4] L. K. Loftin Jr, "Subsonic aircraft: Evolution and the matching of size to performance," 1980.
[5] J. Roshanian, M. Ebrahimi, E. Taheri, A. A. Bataleblu, Multidisciplinary design optimization of space transportation control system using genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, No. 4, pp. 518-529, 2014.
[6] J. R. Martins, A. B. Lambe, Multidisciplinary design optimization: a survey of architectures, AIAA journal, Vol. 51, No. 9, pp. 2049-2075, 2013.
[7] A. R. Babaei, M. R. Setayandeh, and H. Farrokhfal, "Aircraft robust multidisciplinary design optimization methodology based on fuzzy preference function," Chinese Journal of Aeronautics, vol. 31, no. 12, pp. 2248-2259, 2018.
[8] M. R. Setayandeh and A.-R. Babaei, "Multidisciplinary design optimization of an aircraft by using knowledge-based systems," Soft Computing, pp. 1-20, 2020.
[9] M. Fioriti, L. Boggero, P. S. Prakasha, A. Mirzoyan, B. Aigner, and K. Anisimov, "Multidisciplinary aircraft integration within a collaborative and distributed design framework using the AGILE paradigm," Progress in Aerospace Sciences, vol. 119, p. 100648, 2020.
[10] A. Sgueglia et al., "Multidisciplinary design optimization framework with coupled derivative computation for hybrid aircraft," Journal of Aircraft, vol. 57, no. 4, pp. 715-729, 2020.
[11] H. L. Silva et al., "A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft," Structural and Multidisciplinary Optimization, vol. 64, no. 6, pp. 3505-3526, 2021/12/01 2021.
[12] P. M. Zadeh, M. Sayadi, and A. Kosari, "An efficient metamodel-based multi-objective multidisciplinary design optimization framework," Applied Soft Computing, vol. 74, pp. 760-782, 2019/01/01/ 2019.
[13] T. Zhang, X. Yan, W. Huang, X. Che, and Z. Wang, "Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine," Energy, vol. 235, p. 121386, 2021/11/15/ 2021.
[14] N. F. Brown, J. R. Olds, Evaluation of multidisciplinary optimization techniques applied to a reusable launch vehicle, Journal of Spacecraft and Rockets, Vol. 43, No. 6, pp. 1289-1300, 2006.
[15] R. Chhabra, M. R. Emami, A holistic approach to concurrent engineering and its application to robotics, Concurrent Engineering, Vol. 22, No. 1, pp. 48-61, 2014.
[16] R. Chhabra, M. R. Emami, A holistic concurrent design approach to robotics using hardware-in-the-loop simulation, Mechatronics, Vol. 23, No. 3, pp. 335-345, 2013.
[17] M. R. Emami, I. B. Türksen, A. A. Goldenberg, A unified parameterized formulation of reasoning in fuzzy modeling and control, Fuzzy sets and systems, Vol. 108, No. 1, pp. 59-81, 1999.