توسعة یک الگوریتم تعقیب سطح فاصل برای شبیه‌سازی عددی جریان دوفازی لایه‌ای به روش حجم محدود فشارمبنا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده علوم و فنون نوین، دانشگاه تهران

2 دانشجوی دکتری/ دانشکده علوم و فنون نوین، دانشگاه تهران

چکیده

جریان‌های دوفازی و چندفازی از انواع پرکاربرد جریان‌ها در علوم مهندسی سیالات محسوب می‌شوند. از جمله مسائل کاربردی در این زمینه، جریان دوفازی لایه‌ای است که در اثر قرارگیری دو سیال غیرقابل اختلاط در مجاورت هم ایجاد می‌شود. در این نوع از جریان، خواص سیال می‌تواند به‌طور ناگهانی در سطح فاصل یا جداکنندة دو سیال تغییر کند. از جمله چالش‌های مهم در شبیه‌سازی عددی جریان دوفازی لایه‌ای تعیین دقیق موقعیت سطح فاصل است. پژوهش حاضر توسعة یک الگوریتم تعقیب سطح فاصل بر مبنای رهیافت اویلری - لاگرانژی اختیاری به روش مرکزسلول و فشارمبنا با حلگر کوپل را ارائه می‌دهد. برای بررسی صحت عملکرد این الگوریتم، حل تحلیلی جریان دوفازی لایه‌ای تحت تأثیر نیروی گرانش استخراج و سپس نتایج شبیه‌سازی عددی این جریان در حالات گوناگون با حل تحلیلی مقایسه شده است. نتایج شبیه‌سازی‌ها نشان از دقت بسیار خوب نتایج، با وجود استفاده از شبکه‌ای نسبتاً درشت و یکنواخت، دارد. تغییرات زمانی موقعیت سطح فاصل تا رسیدن به حالت پایا نشان می‌دهد که هرچه اختلاف خواص دو سیال (به‌ویژه لزجت) بیشتر باشد، امواج پیش‌روندة حاصل از برخورد دو سیال نیز بزرگتر می‌شود. بررسی اثر نیروی گرانش نیز نشان می‌دهد که نیروی گرانش مثبت سبب کاهش ضخامت سیال سنگین‌تر و نیروی گرانش منفی موجب افزایش آن نسبت به حالت نیروی گرانش صفر می‌شود. البته میزان تغییر ضخامت در نیروی گرانش مثبت بسیار بیشتر از نیروی گرانش منفی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of an interface tracking algorithm for numerical simulation of stratified two-phase flow using a finite volume, pressure-based method

نویسندگان [English]

  • Shidvash Vakilipour 1
  • Masoud Mohammadi 2
  • Roozbeh Riazi 1
  • Mohammad Hossein Sabour 1
چکیده [English]

Two-phase and multi-phase flows are the common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, stratified flow is the one that two immiscible fluids flow in vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) can be different at two sides of the interface of two fluids. The most challenging part of the numerical simulation of stratified flow is to determine the location of interface, accurately. In present work, an interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based coupled solver. To validate this algorithm, analytical solution for stratified flow in presence of gravity is derived and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that the more difference between fluids properties (especially dynamic viscosity), will results in larger traveling waves. Gravity effect studies also show that positive gravity will results in reduction of and negative gravity leads to increasing the thickness of the heavier fluid with respect to the zero gravity condition. However, the magnitude of variation in positive gravity is much more than negative gravity.

کلیدواژه‌ها [English]

  • stratified two-phase flow
  • interface tracking
  • coupled solver
  • gravity force
  • volume rate
[1] J. Weisman, Two-phase flow patterns, Chapter 15 in Handbook of Fluids in Motion (eds: N.P. Cheremisinoff and R. Gupta), Ann Arbor Science Publ., pp. 409-425, 1983.
[2] C. V. Worthy, Understanding Icing, http://pilotgetaways.com/mag/nd09/icing (accessed 15 February 2017)
[3] A. Faghri, Heat pipe science and technology, Global Digital Press, 1995.
[4] A. Faghri, Heat pipes: review, opportunities and challenges, Frontiers in Heat Pipes (FHP), Vol. 5, No. 1, 2014.
[5] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer Science & Business Media, 2012.
[6] J. M. Floryan, H. Rasmussen, Numerical methods for viscous flows with moving boundaries, Applied Mechanics Reviews, Vol. 42, No. 12, pp. 323-341, 1989.
[7] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, Vol. 8, No. 12, p. 2182, 1965.
[8] C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics Vol. 39, No. 1, pp. 201-225, 1981.
[9] J. U. Brackbill, D. B. Kothe, C. Zemach, A Continuum Method for Modeling Surface Tension, Journal of Computational Physics, Vol. 100, No. 2, pp. 335-354, 1992.
[10] S. Chen, D. B. Johnson, P. E. Raad, D. Fadda, The surface marker andmicro cell method, International Journal for Numerical Methods in Fluids, Vol. 25, No. 7, pp. 749-778, 1997.
[11] M. Sussman, P. Smereka, S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows, Journal of Computational Physics, Vol. 114, No. 1, pp. 146-159, 1994.
[12] S. Osher, R.P. Fedkiw, Level Set Methods, Journal of Computational Physics, Vol. 169, No. 2, pp. 463-502, 2001.
[13] J. A. Sethian, Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts, Journal of Computational Physics, Vol. 169, No. 2, pp. 503-555, 2001.
[14] G. D. Raithby, W. X. Xu, G. D. Stubley, Prediction of incompressible free surface with an element-based finite volume method, Journal of Computational Fluid Dynamics, Vol. 4, No. 3, pp. 353-371, 1995.
[15] I. Demirdzic, M. Peric, Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries, International Journal for Numerical Methods in Fluids, Vol. 10, No. 7, pp. 771-790, 1990.
[16] E. S. Oran, J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York, 1987.
[17] P. J. Shopov, P. D. Minev, I. B. Bazhekov, Z. D. Zapryanov, Interaction of a Deformable Bubble with a Rigid Wall at Moderate Reynolds Numbers, Journal of Fluid Mechanics, Vol. 219, pp. 241-271, 1990.
[18] J. Feng, H. H. Hu, D. D. Joseph, Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 1. Sedimentation, Journal of Fluid Mechanics, Vol. 261, pp. 95-134, 1994.
[19] J. Feng, H. H. Hu, D. D. Joseph, Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 2. Couette and Poiseuilli Flows, Journal of Fluid Mechanics, Vol. 277, pp. 271-301, 1995.
[20] H. H. Hu, Direct Simulation of Flows of Solid-Liquid Mixtures, International Journal of Multiphase Flow, Vol. 22, No. 2, pp. 335-352, 1996.
[21] J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis, Z. Zhao, Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling, Physics of Fluids, Vol. 7, No. 2, pp. 236-247, 1995.
[22] J. Glimm, J. W. Grove, X. L. Li, W. Oh, D. H. Sharp, A critical analysis of Rayleigh-Taylor growth rates, Journal of Computational Physics, Vol. 169, No. 2, pp. 652-677, 2001.
[23] M. R. Ansari, N. Samkhaniani, Numerical Simulation of Laminar Film Condensation over Vertical Plate with VOF Method, Modares Mechanical Engineering, Vol. 13, No. 4, pp. 74-85, 2013. (in Persian فارسی).
[24] P. Adibi, M. R. Ansari, Experimental Investigation of Slug Initiation to Upstream Conditions of Two Phases in Long Horizontal Channels in Two Fluids, Modares Mechanical Engineering, Vol. 14, No. 3, pp. 27-35, 2014. (in Persian فارسی).
[25] S. Farzin, Y. Hassanzadeh, M.T. Aalami, R. Fatehi, An implicit incompressible SPH method for free surface flow problems, Modares Mechanical Engineering, Vol. 14, No. 4, pp. 99-110, 2014 (In Persian فارسی).
[26] M. R. Ansari, R. Azadi, S. Kiani Haghgu, Experimental Investigation of Gas-Liquid Two-Phase Flow Regimes in Upward Co-Current Vertical Tubes with Intermediate Diameters, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 383-392, 2015 (In Persian فارسی).
[27] M. R. Ansari, E. Salimi, B. Habibpour, P. Adibi, Three dimensional simulation of slug two-phase flow regime in a horizontal channel using VOF method, Modares Mechanical Engineering, Vol. 14, No. 7, pp. 176-182, 2014 (In Persian فارسی).
[28] F. Hassaninejadafarahani, S. Ormiston, Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels, World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, Vol. 9, No5, pp. 778-785, 2015.
[29] P. A. de Sampaio, J. L. Faccini, J. Su, Modeling of stratified gas–liquid two-phase flow in horizontal circular pipes. International Journal of Heat and Mass Transfer, 2008 Jun 30; 51 (11):2752-61.
[30] O. Cazarez-Candia, G. Espinosa-Paredes, Numerical study of stratified gas-liquid flow, Petroleum Science and Technology, Vol. 26, No. 1, pp. 64-76, 2008.
[31] M. A. Islam, A. Miyara, T. Nosoko, T. Setoguchi, Numerical investigation of kinetic energy and surface energy of wavy falling liquid film, Journal of Thermal Science, Vol. 16, No. 3, 237-242, 2007.
[32] R. W. Fox, T. A. McDonald, Introduction to fluid mechanics, John Wiley, 1994.
[33] S. O. Unverdi, G. Tryggvason, A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows, Journal of Computational Physics, Vol. 100, No. 1, pp. 25-37, 1992.
[34] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y-J. Jan, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics, Vol. 169, No. 2, pp. 708-759, 2001.
[35] I. Demirdzic, M. Peric, Space conservation law in finite volume calculations of fluid flow, International Journal for Numerical Methods in Fluids, Vol. 8, No. 9, pp. 1037-1050, 1988.
[36] C. M. Rhie, W. L. Chow, Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA Journal, Vol. 21, No. 11, pp. 1525–1532, 1983.
[37] S. Vakilipour, S. J. Ormiston, A coupled pressure-based co-located finite-volume solution method for natural-convection flows, Numerical Heat Transfer, Part B: Fundamentals, Vol. 61, No. 2, pp. 91-115, 2012.
[38] S. Muzaferija, M. Peric, Computation of free-surface flows using the finite-volume method and moving grids, Numerical Heat Transfer, Vol. 32, No. 4, pp. 369-384, 1997.
[39] T.E. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, M. Litke, Flow simulation and high performance computing, Computational Mechanics, Vol. 18, No. 6, pp. 397–412, 1996.