بررسی و شبیه‌سازی کاربرد نانوذرات در خنک‌کاری تجهیزات ماهواره استفادة همزمان نانوسیال و لولة حرارتی با سه اواپراتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشگاه صنعتی مالک اشتر

2 کارشناس ارشد / باشگاه پژوهشگران جوان و نخبگان ، دانشگاه آزاد اسلامی واحد یادگار امام خمینی (ره) شهر ری

3 مربی / پژوهشکدة سامانه‌های ماهواره، پژوهشگاه فضایی ایران

4 کارشناس ارشد / باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی واحد لاهیجان

چکیده

مقالة حاضر به مطالعة تأثیر نانوسیال بر عملکرد لولة حرارتی با سه اواپراتور در کاربردهای خنک­کاری تجهیزات ماهواره می­پردازد. نانوذرات مورد استفاده اکسید مس و تیتانیوم می‌اشند. عبارت­های توزیع دمای سطح لولة حرارتی که با روش جداسازی متغیرهای به روش تحلیلی به‌دست می­آیند شامل سری­هایی نامتناهی است که به‌کمک نرم‌افزار متلب و اعمال خواص نانوسیال­ها حل شده‌اند. نتایج نشان می­دهد که استفاده از نانوسیال به‌جای آب می‌واند سبب کاهش بیشتر دمای تجهیزات ماهواره و یکنواخت­تر شدن دما گردد. همچنین ملاحظه شد که افزایش غلظت نانوذره وکاهش قطر آن تأثیر شگرفی در کاهش مقاومت حرارتی و درپی آن بهبود عملکرد لولة حرارتی دارد. در بهترین حالت افزایش غلظت نانوذره 10 نانومتری اکسید مس تا 8 درصد باعث افزایش ضریب انتقال حرارت لوله جرارتی تا 75 درصد می­گردد. به‌کارگیری نانوسیال باعث می­شود سطح انتفال حرارت کمتری مورد نیاز باشد، لذا وزن لولة حرارتی در بهترین شرایط (نانوذرات اکسید مس 8 درصد با قطر 10 نانومتر) تا 35 درصد کاهش می­یابد. یافته­های این مطالعه نشان می­دهد نانوذرات اکسید فلزات می‌توانند پتانسیل بالایی در کاربردهای خنک‌کاری تجهیزات فضایی داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation & simulation of Nanoparticle application in satellite equipment cooling; simultaneous use of Nano fluid and a heat pipe with three evaporators

نویسندگان [English]

  • Hamid Fazeli 1
  • Payam Rahim mashaei 2
  • Mehran Shahryari 3
  • Sajedeh Madani 4
چکیده [English]

This paper aims to study the effect of Nano fluid on the thermal performance of a heat pipe with three evaporators for satellite equipment cooling. Nanoparticles of CuO and TiO2 were considered for modeling. The mathematical expressions of temperature distribution of heat pipe wall, which are analytically derived by separation of variables technique, consist of infinite series that were solved by Matlab software. The accuracy of simulated results was validated against available experimental data and a good agreement was observed between them. The results show that the use of Nano fluid instead of water leads to a more temperature reduction of satellite equipment as well as a more temperature uniformity throughout the wall of heat pipe. Moreover, increasing of nanoparticle concentration and reducing nanoparticle diameter have a remarkable effect on the heat transfer enhancement, thermal resistance reduction, and thus thermal performance of heat pipe. Under the best condition, growing CuO nanoparticle with diameter of 10nm up to 8% increases heat transfer coefficient up to 75%. The use of Nano fluid reduced the required heat transfer surface and the weight of heat pipe in best cause (8% CuO nanoparticle with diameter 10nm) decreases down to 35%. The outcomes of this paper indicate that Nano fluids can have a great potential in satellite equipment cooling.

کلیدواژه‌ها [English]

  • Nano fluid
  • Heat Pipe
  • satellite equipment
  • Cooling
[1] H. Park, A study on thermal performance of heat pipe for optimal placement of satellite equipment, ETRI Journal, vol. 19, pp. 59-69, 1997.
[2] C. Hoa, B. Demolder, A. Alexandre, Roadmap for developing heat pipes for ALCATEL SPACE’s satellites, Applied Thermal Engineering, vol. 23, no. 9, pp. 1099-1108, 2003.
[3] T. Kim, B. S. Hyun, J. J. Lee, J. Rhee, Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe, Aerospace Science and Technology, vol. 27, no. 1, pp. 10-16, 2013.
[4] M. Shafahi, B. Vincenz, K. Vafai, M. Manca, an investigation of thermal performance of cylindrical heat pipes using nanofluids, International Journal of Heat and Mass Transfer, vol. 53, no. 1-3, pp. 376-383, 2010.
[5] S. U. S. Choi, J.A. Eastman, enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, pp. 99-105, 1995.
[6] O. A. Alawi, N. A. Sidik, Mohammed, C. H. A., S. Syahrullail, Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review, International Communication of Heat and Mass Transfer, vol. 56, pp. 50-62, 2014.
[7] Z. H. Liu, Y. Y. Li, A new frontier of nanofluid research-application of nanofluids in heat pipes, International Journal of Heat and Mass Transfer, vol. 55, pp. 6786-6797, 2012.
[8] H. T. Chien, Ch. I. Tsai, P. H. Chen, P. Y. Chen, Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid, Electronic Packaging Technology Proceedings, Fifth International Conference IEEE, pp. 389–391, 2003.
[9] M. Shafahi, B. Vincenzo, K. Vafai, M. Manca, Thermal performance of flat-shaped heat pipe using nanofluids, International Journal of Heat and Mass Transfer, vol. 53, pp. 1438-1445, 2010.
[10] K. Alizad, M. Shafahi, K. Vafai, M. Manca, Thermal performance and operational attributes of startup characteristics of flat-shaped heat pipes using nanofluids, International Journal of Heat and Mass Transfer, vol. 55, pp. 140-155, 2012.
[11] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, P. H., Chen, Effect of Structural character gold nanoparticles in nanofluid on heat pipe performance, Material Letters, vol. 58, pp. 1461-1465, 2004.
[12] G. Kumaresan, S. Venkatachalapath, L. G. Asirvatham, S. Wongwises, Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids, International Communication of Heat and Mass Transfer, vol. 57, pp.208-215, 2014.
[13] S. W. Kang, W. C. Wei, S. H. Tsai, C. C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance, Applied Thermal Engineering, vol. 29, no. 5-6, pp.973-979, 2009.
[14] Y. H. Hung, T. P. Teng, B. G. Lin, Evaluation of the thermal performance of a heat pipe using alumina nanofluids, Experimental Thermal and Fluid Science, vol. 44, pp.505-511, 2013.
[15] N. Putra, W. N. Septiadi, H. Rahman, R. Irvansyah, Thermal performance of screen mesh wick heat pipes with nanofluid, Experimental Thermal and Fluid Science, vol. 40, pp.10-17, 2012.
[16] H. Shabgard, A. Faghri, Performance characteristics of cylindrical heat pipes with multiple heat sources, Applied Thermal Engineering, vol. 31, no. 16, pp.3410-3419, 2010.
[17] M. M. Chen, A. Faghri, an analysis of the vapor flow and heat conduction through the liquid–wick and pipe wall in a heat pipe with single or multiple heat sources, International Journal of Heat and Mass Transfer, vol. 33, pp.1945-1955, 1990.
[18] F. Lefe`vre, M. Lallemand, Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components, International Journal of Heat and Transfer, vol. 39, pp.1375-1383, 2006.
[19] H. Hassan, Heat transfer of Cu–water nanofluid in an enclosure with a heat sink and discrete heat source, European Journal of Mechanic B-Fluid, vol. 45, pp.72-83, 2014.
[20] G. C. Bourantas, E. D. Skouras, V. C. Loukopoulos, G. C. Nikiforidi, Natural convection of nanofluids flow with nanofluid-oriented models of thermal conductivity and dynamic viscosity in the presence of heat source, International Journal of Numerical Method for Heat and fluid flow, vol. 23, no. 2, pp.248-274, 2013.
[21] A. H. Mahmoudi, K. Hooman, Effect of a discrete heat source location on entropy generation in mixed convective cooling of a nanofluid inside the ventilated cavity, International Journal of Exergy, vol. 13, no. 3, pp.299-319, 2013.
[22] P. R. Mashaei, S. M. Hosseinalipour, M. Bahiraei, Numerical investigation of nanofluid forced convection in channels with discrete heat sources, Journal of Applied Mathematics, pp. 259-284, 2012.
[23] P. R. Mashaei, S. M. Hosseinalipour, M. Bahiraei, M. Dirani, 3-D numerical simulation of nanofluid laminar forced convection in a channel with localized heating, Australian Journal of Basic and Applied Science, vol. 6, pp.479-489, 2012.
[24] P. R. Mashaei, S. M.  Hosseinalipour, a numerical study of nanofluid forced convection in a porous channel with discrete heat sources, Journal of porous media, vol. 17, no. 6, pp.549-561, 2014.
[25] P. R. Mashaei, M. Shahryari, Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling, Acta Astronautica, رol. 111, pp.549-561, 2015.
[26] P. R. Mashaei, M. Shahryari, H. Fazeli, S. M. Hosseinalipour, Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: a smart fluid for high efficiency thermal system, Applied Thermal Engineering, Vol. 110, pp.1016-1030, 2016.
[27] N. Zhu, F. Vafai, Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non Darcian transport-a closed form solution, International. Journal of Heat and Mass Transfer, vol. 42, pp.3405-3418, 2016.
[28] M. Layeghi, A. Nouri-Borujerdi, Vapor flow analysis in partially-heated concentric annular heat pipes, InternationalJournal of Computational Engineering Science, vol. 5, no. 1, pp.235-244, 2004.
[29] J. M. Tournier, M. S. El-Genk, A heat pipe transient analysis model, International Journal of Heat and Transfer, vol. 37, pp.753-762, 1994.
[30] T. Kaya, J. Goldak, Three-dimensional numerical analysis of heat and mass transfer in heat pipes, Heat and Mass Transfer, vol. 43, no. 8, pp.775-785, 2007.
[31] S. W. Chi, Heat Pipe Theory and Practice, Hemisphere Washington, DC, 1976.
[32] W. Yu, S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, vol. 5, no. 1, pp.161-171, 2003.
[33] Z. H. Liu, Q. Z. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Conversion and Management, vol. 5, no. 1, pp. 292-300, 2011.
[34] K. H. Do, J. H. Ha, S. P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, International Journal of Heat and Mass Transfer, vol. 53, pp. 5888-5894, 2010.
[35] M. K. Keshavarz, S. Razvaz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, International Communication in Heat and Mass, vol. 39, pp. 1444-1448, 2012.
[36] H. Fazeli, S. Madani, P. R. Mashaei, Nanofluid forced convection in entrance region of a baffled channelconsidering nanoparticle migration, Applied Thermal Engineering, vol. 106, pp.293-306, 2016.
[37] A. Akbarinia, R. Laur, Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach, International Journal of Heat and Fluid Flow, vol. 30, no. 4, pp.706-714, 2009.