تأثیر تعداد فلیملت‌ها و نرخ استهلاک اسکالر آرام آنها بر مشخصه‏ های احتراقی در یک محفظة احتراق مدل توربین گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 دانشجوی کارشناسی ارشد / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

3 دانشجوی دکتری / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

در این مقاله تأثیر نحوة شکل‏گیری شعلة آشفته بر مشخصه‏های احتراقی در یک محفظة احتراق مدل توربین گاز با استفاده از مدل فلیملت آرام بررسی شده است. تأثیر تعداد فلیملت‏ها و نرخ استهلاک اسکالر آرام آنها‏ بر مشخصات جریان واکنشی همچون دما، نرخ استهلاک اسکالر آشفتگی شعله، غلظت گونه‏ها و آلایندة نیتروژن مونوکسید در مقاطع مختلف محفظة احتراق از نتایج این مقاله است. برای حل معادلات حاکم بر احتراق غیرپیش‏آمیختة‏ کروسین مایع در محفظة احتراق مدل از شبکه‏بندی منظم حجم ‏محدود استفاده شده است. در شبیه‌سازی عددی جریان دو فاز واکنشی این محفظة احتراق، از مدل آشفتگی ، مدل احتراقی فلیملت پایا و سازوکار شیمیایی 26 واکنشی با 17 گونة مستقل استفاده شده است. این مقاله در سه حالت گوناگون فلیملت‏ انجام و نتایج آنها با نتایج آزمایشگاهی موجود مقایسه شده است. نتایج نشان می‏دهد که تأثیر تعداد فلیملت‏های آرام و ماکزیمم نرخ استهلاک اسکالر شعله بر سرعت جریان ناچیز است. با این‏حال این دو پارامتر بر دمای شعله تأثیرگذارند. در حالتی که شعله از تعداد فلیملت آرام و ماکزیمم نرخ استهلاک اسکالر بزرگتری تشکیل شده باشد، اختلاف کمتری بین دمای شبیه‌سازی و آزمایشگاهی مشاهده می‌شود. با کاهش تعداد فلیملت‌های آرام و ماکزیمم نرخ استهلاک اسکالر از کشیدگی شعله کاسته و دما و آلایندة نیتروژن مونوکسید بیشتری پیش‏بینی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of number of laminar flame lets and their scalar dissipation rate on combustion characteristics in a gas turbine model combustor

نویسندگان [English]

  • Farzad Bazdidi Tehrani 1
  • Sajad Mirzaei 2
  • Mohammad Sadegh Abedinejad 3
3 PhD Candidate, School of Mechanical Engineering, Iran University of Science and Technology
چکیده [English]

The purpose of this paper is investigation of the influence of turbulent flame formation by using laminar Flamelet model on combustion characteristics in a gas turbine model combustor. The effect of number of laminar Flamelets and their scalar dissipation rate on reactive flow characteristics such as temperature, scalar dissipation rate of flame, concentration of species and NO emission are the results of this paper. In order to solve the governing equations of non-premixed combustion of Kerosene liquid fuel in a gas turbine model combustor, the Finite Volume method is employed. The Realizable k-ε turbulence model, steady Flamelet combustion model and chemical mechanism with 26 reduced reaction and 17 species are applied to simulate two-phase reacting flow in this combustor. This study is performed in three different Flamelet cases and their results are compared with available experimental data. The results show that the effect of laminar Flamelet numbers and the maximum scalar dissipation rate of flame on the velocity of flow is negligible. However, the flame temperature is affected from these parameters. In the case that the flame consists of greater laminar Flamelets numbers and the maximum scalar dissipation rate, less difference between simulation and experimental temperature is observed. By reducing the laminar Flamelets numbers and the maximum scalar dissipation rate, the stretch of flame is reduced, higher temperature and higher NO emission are predicted.

کلیدواژه‌ها [English]

  • model combustor
  • flamelet
  • liquid fuel
  • reactive flow
  • pollutant emissions
[1] A. Tyliszczak, A. Boguslawski, and D. Nowak, Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system, Applied Energy, Vol. 174, pp. 153–165, 2016.
[2] M. M. Torkzadeh, F. Bolourchifard, E. Amani, An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization, Fuel, vol. 186, pp. 734–749, 2016.
[3] G. Bulat, W. Jones, A. Marquis, NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method, Combustion and Flame, vol. 161, no. 7, pp. 1804-1825, 2014.
[4] H. Moriai, R. Kurose, H. Watanabe, Y. Yano, F. Akamatsu, S. Komori, Large-Eddy Simulation of Turbulent Spray Combustion in a Subscale Aircraft Jet Engine Combustor-Predictions of NO and Soot Concentrations, Journal of Engineering for Gas Turbines and Power, vol. 135, no. 9, 2013.
[5] H. Wen Ge, E. Gutheil, Simulation of a Turbulent Spray Flame using Coupled PDF Gas Phase and Spray Flamelet Modeling, Combustion and Flame, 153, pp. 173-185, 2008.
[6] H. Zeinivand, F. Bazdidi-Tehrani, Influence of Stabilizer Jets on combustion Characteristics and NOx Emission in a Jet-Stabilized combustor, Applied Energy, vol. 92, pp. 348-360, 2012.
[7] F. Bazdidi-Tehrani and H. Zeinivand, Presumed PDF Modeling of Reactive Two-phase Flow in a Three Dimensional Jet-Stabilized Model combustor, Energy conversion and Management, vol. 51, pp. 225-234, 2010.
[8] C. D. Cameron, J. Brouwer, C. P. Wood and G. S. Samuelsen, A Detailed Characterization of the Velocity and Thermal Fields in a Model Can combustor with Wall Jet Injection, Gas Turbine Power, vol. 111, pp. 31-35, 1989.
[9] C. D. Richards, G. S. Samuelsen, The Role of Primary Jets in the Dome Region Aerodynamics of a Model Can Combustor, Gas Turbine Power, vol. 114, pp. 20-26, 1992.
[10] C. D. Cameron, J. Brouwer, G. S. Samuelsen, A Model Gas Turbine combustor with Wall Jets and Optical Access for Turbulent Mixing Fuel Effects and Spray, Twenty-Second Symposium (International) on combustion, Combustion Institute, Pittsburgh, PA (US), pp. 465-474, 1988.
[11] ANSYS FLUENT User’s Manual, Version 16.0, 2015.
[12] S. S. Sazhin, Advanced Models of Fuel Droplet Heating and Evaporation, Progress in Energy and Combustion Science, vol. 32, pp. 162-214, 2006.
[13] A. Berlemont, M. S. Grancher, G. Gouesbet, Heat and Mass Transfer coupling between Vaporizing Droplets and Turbulence using a Lagrangian Approach, Heat and Mass Transfer, vol. 38, pp. 3023-3034, 1995.
[14] J. H. Park, Y. Yoon, S. S. Hwang, Improved Tab-Model for Prediction of Spray Droplet Deformation and Breakup, Atomization and Sprays, vol. 12, pp. 387-402, 2002.
[15] Flows S.I.A.f.M., Sommerfeld M., Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multi-Phase Flows, European Research Community on Flow, Turbulence and Combustion (ERCOFTAC), 2008.
[16] W. A. Sirignano, Fluid dynamics and transport of droplets and sprays, Cambridge University Press, 1999.
[17] M. Alletto, M. Breuer, One-way, two-way and four-way coupled LES predictions of a particle-laden turbulent flow at high mass loading downstream of a confined bluff body, International Journal of Multiphase Flow, vol. 45, pp. 70-90, 2012.
[18] S. Jo, H. Y. Kim, S. S. Yoon, Numerical Investigation on the Effects of Inlet Air Temperature on spray combustion in a Wall Jet Can Combustor Using the  Turbulence Model, Numerical Heat Transfer, vol. 54, pp. 1101-1120, 2008.
[19] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, A new k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation, Computers Fluids, vol. 24, No. 3, pp. 227-238, 1995.
[20] D. Veynante, L. Vervisch, Turbulent Combustion Modeling, Energy Combustion, vol. 28, pp. 193-266, 2002.
[21] K. Claramunt, Numerical simulation of non-premixed laminar and turbulent flames by means of flame let moodelin, approaches, PhD Thesis, Department of Heat Engines, Universitat Politècnica de Catalunya, 2005.
[22] K. Kundu, P. Penko, S. Yang, Simplified Jet-A/Air یmbustion Mechanisms for Calculation of NOx Emissions, 29th Joint Propulsion reference and Exhibit, 1993.
[23] M. F. Modest, Radiative Heat Transfer, Third Edition, Academic Press, U. S, 2013.
[24] J. Moss, S. Perera, C. Stewart, M. Makida, Radiation heat transfer in gas turbine combustors, Proc 16th (Int’l) Symp on Airbreathing Engines, Cleveland, OH, 2003.
[25] T. F. Smith, Z. F. Shen, J. N. Friedman, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, Heat Transfer, vol. 104, pp. 602-608, 1982.
[26] Y. B. Zeldovich, P. Y. Sadovinikov, D. A. Frank-Kamenetskii, Oxidation of Nitrogen in Combustion, Publishing House of the Acad of Sciences of USSR, 1947.
[27] C. Westbrook, F. Dryer, Chemical Kinetic Modelling of Hydrocarbon Combustion, Progress in Energy and Combustion Science, vol. 10, pp. 1-57, 1984.
[28] De Soete, Overall Reaction Rates of NO & N2 Formation from Fuel Nitrogen, Symposium (international) on Combustion, 15, Toshi Center Hall Tokyo, Japan, pp. 1093-1102, 1975.
[29] A. H. Lefebvre, Gas turbine combustion. CRC press, 1998.
[30] Z. Yin, I. Boxx, M. Stöhr, O. Lammel, W. Meier, Confinement-Induced Instabilities in a Jet-Stabilized Gas Turbine Model Combustor, Turbulence and Combustion, vol. 98, no. 1, pp. 217-235, 2017.
[31] A. C. Benim, et al., Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor, Applied Thermal Engineering, vol. 110, pp. 202-212, 2017.
[32] M. A. Habib, et al., Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor, Applied Energy, vol. 189, pp. 177-186, 2017.
[33] ANSYS ICEM CFD Tutorial Manual, Version 11.0, 2007.
[34] L. Davidson, Fluid Mechanics, Turbulent Flow and Turbulence Modeling, Chalmers University of Technology, Sweden, 2016.
[35] B. K. Sharma, Air Pollution, UK, Goel Publishing House, Fourth Edition, 2005.