مروری بر شبیه سازهای سخت افزاری دینامیک وضعیت ماهواره

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / دانشگاه صنعتی مالک اشتر

چکیده

شبیه­سازهای دینامیک وضعیت از جمله پرکاربردترین تجهیزاتی هستند که در پژوهش‌های پایداری و کنترل سامانه­های فضایی کاربرد دارند؛ زیرا حرکت چرخشی بدون قید تولید و در عین سادگی، انجام تست­های عملی ماهواره یا فضاپیما روی زمین را ممکن می‌کنند. ویژگی منحصر به­فرد این تجهیزات در شبیه­سازی محیط عملکردی ماهواره است که سه درجه آزادی چرخشی مقید یا نامقید (بسته به نوع یاتاقان هوایی) تولید می­نماید. در این مقاله، ضمن دسته­بندی انواع شبیه­سازهای دینامیک و کنترل وضعیت ماهواره، روی شبیه­سازهای مبتنی بر یاتاقان هوایی تمرکز می‌شود و سیر تحول طراحی و ساخت آن را به­طور کامل مورد بررسی قرار می‌گیرد. ارائة دستاوردهای موجود و ارزیابی آنها در کنار دسته­بندی مراجع موجود در حوزة شبیه­سازهای سخت­افزاری ماهواره، از ویژگی­های دیگر این مقاله است که استفاده از آن را برای متخصصان و دانشجویان علاقه­مند به این سیستم­ها فراهم می­آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Survey of hardware-based satellite attitude dynamics simulators

نویسنده [English]

  • Hojat Taei
چکیده [English]

Attitude dynamics simulators are one of the most common facilities utilized in spacecraft attitude and stability researches, because these systems produce a free and unconstrained rotational motion. Therefore, they provide a platform to perform practical tests on satellite or spacecraft in easy way. Simulation of space environment is the best specification of such devices that help scientists to have constrained or unconstrained platforms for three degrees of freedom motions. This paper intends to present a novel classification of satellite simulators in first phase and then tries to focus on air-bearing-based simulators and presents a survey of them. Investigation of available sample of satellite simulators and verification of them are the other specifications of this article caused to be a good reference for students and researchers.

کلیدواژه‌ها [English]

  • hardware-based satellite simulator
  • attitude dynamics
  • air-bearing
  • thruster
  • reaction wheel
  • attitude sensor
[1] H. Taei, Optimal Design Layout for a Tri-axial Satellite Attitude Dynamics Simulator with Combinatorial Actuators, Ph.D. Thesis, Aeospace Engineering Faculty, K. N. Toosi University of Technology, I.R. Iran, 2015 (In Persian  فارسی).
[2] M. Mirshams, H. Taei, M. Ghobadi, H. Haghi, G. Sharifi, using air-bearing based platform and cold gas thruster actuator for satellite attitude dynamics simulation, Modares Mechanical Engineering Journal, vol. 14, no. 12, pp. 1-12, 2015 (In Persian فارسی).
[3] M. Mirshams, H. Taei, V. Rezvani, E. Taheri, Deriving the Dynamic Equation and Design of an Optimal Controller for a Satellite Attitude Motion Simulator and Comparison with PID Controller, 9th Iranian Aerospace Association Conference, I.R. Iran, 2010 (In Persian فارسی).
[4] B. Kim, E. Velenis, P. Kriengsiri, P. Tsiotras, Designing a low-cost spacecraft simulator, Control Systems, IEEE, vol. 23, no. 4, pp. 26-37, 2003.
[5] M. Mirshams, A. Nahvi, M. Khosrojerdi, H. Taei, M. Vahid, a 6-DoF Satellite Virtual Simulator Design and Development, Applied Mechanics and Materials, vol. 186, pp. 70-74, 2013.
[6] J. E. Colebank, R. D. Jones, G. R. Nagy, R. D. Pollak, D. R. Mannebach, SIMSAT: a satellite system simulator and experimental test bed for air force research, M. Sc. Thesis, Department of Aeronautics and Astronautics, Air Force Institute of Technology, USA, 1999.
[7] J. L. Schwartz, the distributed spacecraft attitude control system simulator: from design concept to decentralized control, Ph.D. Thesis, Aerospace Engineering Faculty, Virginia Polytechnic Institute and State University, USA, 2004.
[8] D. Gallardo, R. Bevilacqua, Six Degrees of Freedom Experimental Platform for Testing Autonomous Satellites Operations, Proceedings of the 8th International ESA GNC Conference, Czech Republic, 2011.
[9] M. Mirshams, H. Taei, M. Vahid, A Systems Engineering for Satellite Simulator Design, ASME Conference on Systems Engineering, Turkey, 2010.
[10] J. E. Smith, Attitude model of a reaction wheel/fixed thruster based satellite using telemetry data, M. Sc. Thesis, Departmentof Aeronautics and Astronautics, Air Force Institute of Technology, USA, 2005.
[11] M. Mirshams, H. Taei, M. Ghobadi, H. Haghi, E. Zabihian, Spacecraft Attitude Dynamics Simulator with Combinatorial Actuators, Electronics Industries Quarterly, vol. 4, no. 4, pp. 13-27, 2013. (In Persian فارسی).
[12] J. L. Schwartz, C. D. Hall, System identification of a spherical air-bearing spacecraft simulator, AAS Paper, vol. 122, 2004.
[13] M. Mirshams, H. Taei, A. Novin-zadeh, A 3-DoF Satellite Simulator Design & Development, 60th International Aerospace Congress, South Korea, 2000.
[14] M. Mirshams, H. Taei, M. Ghobadi, H. Haghi, Spacecraft Attitude Dynamics Simulator Actuated by Cold Gas Propulsion System, Proceeding of the Institution of Mechanical Engineering, Part G: Journal of Aerospace Engineering, vol. 5, no. 3, pp. 1510-1530, 2015.
[15] C. G. McChesney, Design of attitude control actuators for a simulated spacecraft, M. Sc. Thesis, Department of Aeronautics and Astronautics, Air Force Institute of Technology, USA, 2011.
[16] J. L. Schwartz, M. A. Peck, C. D. Hall, Historical review of air-bearing spacecraft simulators, Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 513-522, 2003.
[17] M. Mirshams, H. Taei, H. Haghi, V. Rezvani, Design and Manufacturing of a Tri-axial Spacecraft Attitude Motion Simulator, 1st Conference on Flight Simulation, I.R. Iran, 2009 (In Persian فارسی).
[18] M. Mirshams, M. Ghobadi, H. Taei, Design, Development and Test of an Engineering Sample of Cold Gas Thruster for Using in a Tria-axialSatellite Attitude Dynamics Simulator, Sharif Mechanical Engineering Journal, vol. 8, no. 2, pp. 150-165, 2013 (In Persian فارسی).
[19] H. C. Schubert, J. P. How, Space Construction: An Experimental Testbed to Develop Enabling Technologies, Proceedings of the Conference on Telemanipulator and Telepresence Technologies IV, USA, 1997.
[20] S. Matunaga, K. Yoshihara, T. Takahashi, S. Tsurumi, K. Ui, Ground Experiment System for Dual-Manipulator-Based Capture of Damaged Satellites, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Japan, 2000.
[21] B. Pond, I. Sharf, Experimental Demonstration of Flexible Manipulator Trajectory Optimization, Proceedings of the AIAA Guidance, Navigation and Control Conference, USA, 1999.
[22] M. G. Spencer, Development of a servicing satellite simulator, Proceedings of the AIAA space conference and exposition, USA, 2001.
[23] R. L. Kinnett, System Integration and Control of a Low-Cost SpacecraftAttitude Dynamics Simulator, MSc. Thesis, Aerospace Engineering, California Polytechnic State University, 2010.
[24] D. M. Meller, J. Reiter, M. Terry, K. F. Böhringer, M. Campbell, A docking system for microsatellites based on MEMS actuator arrays, Proceedings of the AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference and Exhibit, USA, 2001.
[25] W. R. Wilson, L. L. Jones, M. A. Peck, A Multimodule Planar Air Bearing Testbed for CubeSat-Scale Spacecraft, Journal of Dynamic Systems, Measurement, and Control, vol. 135, no. 4, pp. 1-10, 2013.
[26] B. H. Dishman, F. J. Moran, Air bearing table mechanization and verification of a spacecraft wide angle attitude control system, Journal of Spacecraft and Rockets, vol. 7, no. 7, pp. 819-825, 1970.
[27] H. Taei, Optimal Design of a Satellite Attitude Motion Simulator, MSc. Thesis, Aeospace Engineering Faculty, K. N. Toosi University of Technology, 2009 (In Persian فارسی).
[28] S. Sanz Fernandez de Cordova, D. Debra, Mass center estimation of a drag-free satellite, international Federation of Automatic Control, 6th Triennial World Congress, USA, 1975.
[29] D. C. Fosth, The Lunar Orbiter Attitude Control Simulator, Aerospace and Electronic Systems, IEEE Transactions on, no. 3, pp. 417-423, 1967.
[30] B. N. Agrawal, Acquisition, tracking and pointing of bifocal relay mirror spacecraft, Advances in the Astronautical Sciences, vol. 114, pp. 783-800, 2003.
[31] B. N. Agrawal, R. Mcclelland, G. Song, Attitude control of flexible spacecraft using pulse-width pulse-frequency modulated thrusters, Space Technology-Kedlington, vol. 17, no. 1, pp. 15-34, 1997.
[32] B. N. Agrawal, R. E. Rasmussen, Air-bearing-based satellite attitude dynamics simulator for control software research and development, Aerospace/Defense Sensing, Simulation, and Controls, USA, 2001.
[33] G. Song, B. N. Agrawal, Vibration suppression of flexible spacecraft during attitude control, Acta Astronautica, vol. 49, no. 2, pp. 73-83, 2001.
[34] J. Lau, S. S. Joshi, B. N. Agrawal, J.-W. Kim, Disturbance filtering and identification on the naval postgraduate school 3-axis spacecraft simulator, Proceedings of the AIAA guidance, navigation, and control conference and exhibit, USA, 2005.
[35] R. R. Fullmer, Dynamic Ground Testing of the Skipper Attitude Control System, Proceedings of the 34th AIAA Aerospace Sciences Meeting & Exhibit, USA, 1996.
[36] B. Kim, E. Velenis, P. Kriengsiri, P. Tsiotras, A spacecraft simulator for research and education, Proceedings of the AIAA/AAS Astrodynamics Specialists Conference, USA, 2001.
[37] D. Jung, P. Tsiotras, A 3-dof experimental test-bed for integrated attitude dynamics and control research, AIAA Guidance, Navigation & Control Conference, USA, 2003.
[38] J. Li, M. A. Post, R. Lee, Nanosatellite attitude air bearing system using variable structure control, 25th IEEE Canadian Conference on Electrical & Computer Engineering, 2008.
[39] M. A. Peck, L. Miller, A. R. Cavender, M. Gonzalez, T. Hintz, An airbearing-based testbed for momentum control systems and spacecraft line of sight, Advances in the Astronautical Sciences, vol. 114, pp. 427-446, 2003.
[40] J. Prado, G. Bisiacchi, L. Reyes, E. Vicente, F. Contreras, M. Mesinas, A. Juárez, Three-axis air-bearing based platform for small satellite attitude determination and control simulation, Journal of Applied Research and Technology, vol. 3, no. 3, pp. 222-237, 2005.
[41] A. Das, J. L. Berg, G. A. Norris, D. F. Cossey, T. J. Strange III, W. T. Schlaegel, Astrex-a unique test bed for CSI research, in Decision and Control, Proceedings of the 29th IEEE Conference on Decision and Control, USA, 1990.
[42] N. G. Creamer, G. C. Kirby, R. E. Weber, A. B. Bosse, S. Fisher, An integrated gps/gyro/smart structures architecture for attitude determination and baseline metrology, Proceedings of the AIAA Guidance, Navigation, and Control Conference, USA, 1997, pp. 1945-1955.
[43] D. Halsmer, W. Bair, P. Ng, The Spinning Rocket Simulator: An Experimental DesignProject for Teaching and Research, ASEE Annual Conference & Exposition, USA, 1996.
[44] B. J. Kim, H. Lee, Spacecraft attitude dynamics analysis using three-axis air bearing, Space Technology, vol. 17, no. 1, pp. 45-50, 1997.
[45] H. Figueiredo, O. Saotome, Design of a Set of Reaction Wheels for Satellite Attitude Control Simulation, 22nd International Congress of Mechanical Engineering, Brazil, 2013.
[46] L. C. de Souza, V. M. Arena, Design of Satellite AttitudeControl Algorithm Based on the SDRE Method Using Gas Jets and Reaction Wheels, Journal of Engineering, vol. 2013, 2013.
[47] L. C. G. de Souza, Experimental Parameters Estimation of Satellite Attitude Control Simulator, Journal of Aerospace Engineering, vol. 1, no. 2, pp. 14, 2008.
[48] J. S. Young, Development of an automatic balancing system for a small satellite attitude control simulator, MSc. Thesis, Mechanical Engineering, Utah University, USA, 1998.
[49] A. Aghalari, S. A. Kalhor, M. M. Dehghan, S. H. Cheheltani, Manufacturing and Test of an Attitude Dynamics Simulator for Microsatellites Based on CMG, Journal of Aerospace Science and Technology, vol. 7, no. 3, pp. 51-67, 2013 (In Persian فارسی).
[50] D. S. Bernstein, N. H. McClamroch, A. Bloch, Development of air spindle and triaxial air bearing testbeds for spacecraft dynamics and control experiments, Proceedings of the American Control Conference, USA, 2001.
[51] S. Cho, J. Shen, N. McClamroch, D. Bernstein, Equations of motion for the triaxial attitude control testbed, Proceedings of the 40th IEEE Conference on Decision and Control, USA, 2001.
[52] S. Cho, N. H. McClamroch, Feedback control of triaxial attitude control testbed actuated by two proof mass devices, Proceedings of the Conference on Decision and Control, USA, 2002.
[53] D. B. French, Hybrid control strategies for rapid, large angle satellite slew maneuvers, M. Sc. Thesis, Department of Aeronautical and Astronautical Engineering, Air Force Institute of Technology, USA, 2003.
[54] V. J. Dabrowski, Experimental demonstration of an algorithm to detect the presence of a parasitic satellite, MSc. Thesis, Department of Aeronautics and Astronautics, Air Force Institute of Technology, USA, 2003.
[55] P. Wang, J. Yee, F. Hadaegh, Synchronized rotation of multiple autonomous spacecraft with rule-based controls: experimental study, Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 352-359, 2001.
[56] J. J. Kim, B. N. Agrawal, Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator, Journal of Guidance, Control, and Dynamics, vol. 32, no. 3, pp. 1005-1017, 2009.
[57] R. Bevilacqua, A. Caprari, J. Hall, M. Romano, Laboratory Experimentation of Multiple Spacecraft Autonomous Assembly, AIAA Guidance, Navigation and Control Conference and Exhibit, USA, 2009.
[58] J. S. Hall, Design and integration of a three degrees-of-freedom robotic vehicle with control moment gyro for the Autonomous Multiagent Physically Interacting Spacecraft (AMPHIS) testbed, M. Sc. Thesis, Astronautical Engineering Faculty, Naval Postgraduate School, USA, 2006.
[59] W. D. Price, Control system of a three dof spacecraft simulator by vectorable thrusters and control moment gyros, MSc. Thesis, Astronautical Engineering Faculty, Naval Postgraduate School, USA, 2006.
[60] D. M. Cho, D. Jung, P. Tsiotras, A 5-dof Experimental Platform for Autonomous Spacecraft Rendezvous & Docking, Proceedings of AIAA Infotech@ Aerospace Conference, USA, 2009.
[61] K. Saulnier, D. Pérez, G. Tilton, D. Gallardo, C. Shake, R. Huang, R. Bevilacqua, Operational Capabilities of a Six Degrees of Freedom Spacecraft Simulator, AIAA Guidance, Navigation, and Control (GNC) Conference, USA, 2013.
[62] K. Saulnier, D. Pérez, R. Huang, D. Gallardo, G. Tilton, R. Bevilacqua, A six-degree-of-freedom hardware-in-the-loop simulator for small spacecraft, Acta Astronautica, Vol. 105, No. 2, pp. 444-462, 2014.
[63] K. Omagari, T. Usuda, S. Matunaga, Research of controlmomentum gyros for micro-satellites and 3-DOF attitude dynamics simulator experiments, Proceedings of the Int’l Symposium on Artificial Intelligence, Robotics and Automation in Space, Germany, 2005.
[64] W. Whitacre, An autonomous underwater vehicle as aspacecraft attitude control simulator, 43rd AIAA Aerospace Sciences Meeting and Exhibit, USA, 2005.
[65] F. Aghili, M. Namvar, G. Vukovich, Satellite simulator with a hydraulic manipulator, Proceedings of IEEE International Conference on Robotics and Automation, USA, 2006.
[66] T. Boge, O. Ma, using advanced industrial robotics for spacecraft rendezvous and docking simulation, Proceedings of IEEE International Conference on Robotics and Automation, China, 2011.
[67] O. Ma, K. Ruble, R. Tessier, E. Krecher, A New Technology for Physically Simulating 3D Free Floating and Rotating of an Object in Zero-Gravity Environment, AIAA Modeling and Simulation Technologies (MST) Conference, USA, 2013.