طراحی سامانة حرکت ساز مدل پیش بین فازی زمان واقعی

نوع مقاله: مقاله پژوهشی

نویسنده

عضو هیات علمی / دانشکدة مکاترونیک، دانشگاه آزاد اسلامی، واحد کرج، البرز

چکیده

تلاش‌ها در ایجاد حس حرکت واقعی‌تر به‌سمت طراحی سامانه‏های حرکت­ساز با مدل‌های سینماتیک معکوس غیرخطی سامانه‌های حرکتی گرایش یافته است. این رویکرد به‌علت ضرورت کاربرد حل زمان واقعی سبب پیچیدگی محاسباتی می‌شود. اجابت خواسته‌های مسئله، نیازمند بهره‌گیری از روش‌های محاسباتی کارآمد با سرعت و دقت بالا، بدون بروز وقفه در عملکرد سامانة حرکتی در کاربردهای زمان واقعی است. سیستم‌های فازی به‌عنوان بخش مهمی از سیستم‌های محاسباتی نرم، قابلیت مدلسازی فرایندهای غیرخطی با ویژگی‌های سرعت محاسباتی بالا با دقت لازم و سادگی در پیاده‌سازی می‏باشند. در این مقاله از سیستم فازی تاکاگی - سوگنو - کانگ با قابلیت تقریب مدل غیرخطی آنی با ترکیب فازی مجموعة مدل‌های خطی برای تقریب سینماتیک معکوس سامانه حرکتی استفاده شده است. همچنین سکوی 6 درجه آزادی استوارت به‌عنوان رایج­ترین سامانة حرکتی در شبیه­سازهای پرواز در نظر گرفته شده و سامانة حرکت­ساز افزوده حس حرکتی انسان همراه با سینماتیک معکوس فازی سامانةة حرکتی برپا شده است. مدل حرکت­ساز حاصل با رویکرد کنترل مدل پیش­بین زمان واقعی با هدف ردیابی حس حرکتی خلبان وسیلة واقعی، حل و نتایج حاصل با مدل حرکت­ساز غیرخطی سینماتیک معکوس سامانة حرکتی مقایسه شده است. نتایج شبیه‌سازی نشان‌دهندة کیفیت مطلوب روش پیشنهادی از نظر حرکت محدودتر و هموارتر عملگرها بوده و به‌عنوان جایگزینی مطمئن در کاربردهای زمان واقعی حرکت­ساز پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Real time fuzzy model predictive motion cueing design

نویسنده [English]

  • Abolfath Nikranjbar
چکیده [English]

Endeavor achieving as much as realistic perception of motion in motion cueing design are shifted towards utilizing the general nonlinear models of the motion systems. However, this approach is computationally more demanding. Hence, using efficient computational algorithms are essential to fulfill the requirements of high computing speed and accuracy without any interruption in real-time operations. Takagi - Sugeno fuzzy system as a major sector of soft computing characterized by effectively dealing with nonlinear processes, high computational speed, and easy implementation is used to approximate the nonlinear inverse kinematic of the motion system model by fuzzy interpolation of the set of linear sub models. The augmented linear parameter varying motion cueing model is constructed incorporating the fuzzy approximated inverse kinematics of the motion system along with the human perception of motion. The complete motion cueing model is computed using real-time model predictive control approach considering all physical constraints. The results of simulation show remarkable improvements in terms of less and smooth movements of actuators, hence much efficient use of motion system’s workspace compared to its general nonlinear counterpart, which reveals an effective alternative in real-time applications.

کلیدواژه‌ها [English]

  • flight simulator
  • fuzzy motion cueing
  • fuzzy inverse kinematics
  • fuzzy model predictive control
  • stewart platform

[1] A. Sayadi, A. Nikranjbar, A. Mahmoodi, Optimal motion cueing algorithm development of 6dof flight simulator considering workspace of motion platform, Aerosapce Knowledge and Technology Journal, Vol. 3, No. 1, pp. 17-28, 2014 (in Persian).

[2] A. Nikranjbar, Motion Cueing Algorithm Design using Model Predictive Control, Aerosapce Knowledge and Technology Journal, Vol. 6, No. 2, pp. 8-8, 2017 (in Persian).

[3] M. Baseggio, A. Beghi, M. Bruschetta, F. Maran, D. Minen, An MPC approach to the design of motion cueing algorithms for driving simulators, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, 5-7 Oct., pp. 692-697, 2011.

[4] A. Beghi, M. Bruschetta, F. Maran, D. Minen, A Model-based Motion Cueing strategy for compact driving simulation platforms, Driving Simulation Conference, 6-7 Sep., Paris, France, pp. 1-8, 2012.

[5] M. Bruschetta, F. Maran, A. Beghi, D. Minen, An MPC Approach to the Design of Motion Cueing Algorithms for a High Performance 9 DOFs Driving Simulator, Driving Simulation Conference, 4-5 Sep., Paris, France, pp. 12.1 -12.7, 2014.

[6] F. Maran, M. Bruschetta, A. Beghi, D. Minen, Improvement of an MPC-based Motion Cueing Algorithm with Time-Varying Prediction and Driver Behaviour Estimation, Driving Simulation Conference, 16 -18 Sep., Germany, Europe, pp. 1-8, 2015.

[7] F. Maran, M. Bruschetta, A. Beghi, Study of a real-time, MPC based motion cueing procedure with time-varying prediction for different classes of drivers, American Control Conference (ACC), 6-8 July, USA, pp. 1711-1716, 2016.

[8] N. J. Garrett, C. M. Best, Model predictive driving simulator motion cueing algorithm with actuator-based constraints, Vehicle System Dynamics, Vol. 51, No. 8, pp. 1151-1172, 2013.

[9] K. Fellah, M. Guiatni, Y. Morsly, Fuzzy/PSO Based Washout Filter for Inertial Stimuli Restitution in Flight Simulation, the Seventh International Conference on Sensor Technologies and Applications, SENSORCOMM, 25-31 Aug. Barcelona Spain, pp. 236-242, 2013.

[10] H. Asadi, S. Mohamed, S. Nahavandi, Incorporating Human Perception with the Motion Washout Filter Using Fuzzy Logic Control, IEEE/ASME Transactions on Mechatronics, 20, No. 6, pp. 3276-3284, 2015.

[11] K. Tanaka, O. H. Wang, Fuzzy Control Systems Design and Analysis, John Wiley & Sons, 2001.

[12] D. H. Taghirad, Parallel robots: mechanics and control, CRC press, 2013.

[13] K. Harib, K. Srinivasan, Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica, Vol. 21, No. 5, pp. 541-554, 2003.

[14] D. J. Currie, Practical Applications of Industrial Optimization: From High-Speed Embedded Controllers to Large Discrete Utility Systems, PhD Thesis, School of Engineering, Auckland University of Technology, New Zealand, 2014.

[15] L. Wang, Model predictive control system design and implementation using MATLAB, Springer Science & Business Media, 2009.

[16] J. Currie, JMPC Toolbox, ver. 3.21, Industrial Information and Control, Aukland University of Technology, New Zealand, September 25, 2014. Available from: http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html (accessed 1 April 2018).

[17] Z. Bingul, O. Karahan, Dynamic Modeling and Simulation of Stewart Platform, Chapter 2, INTECH Open Access Publisher, pp.19-41, 2012.