تبیین رفتار نرخ خطر عملکرد بالستیک داخلی یک سلاح کالیبر بزرگ براساس تحلیل مدل‌های بهینة قابلیت اطمینان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکدة مهندسی صنایع، دانشگاه صنعتی مالک اشتر

2 دانشجوی دکتری / دانشکدة مهندسی صنایع، دانشگاه صنعتی مالک اشتر

چکیده

چون برای ارزیابی عملکرد بالستیک لازم است تمامی الزامات با دقت زیاد از یک نمونة آماری محدود به‌دست آید، همواره موضوعی چالشی است. تکنیک­های ارزیابی پایداری بالستیکی پرتابه­ها که به‌تازگی در پژوهش­های متعددی برای اندازه­گیری نرخ ایجاد سوراخ (پرفوراسیون) بر پوستة سلاح در تمامی سرعت­های ممکن به‌کار گرفته شده، بر این فرض بنا شده­اند که سرعت پرتابه از توزیع نرمال پیروی می­کند. در این پژوهش، با انجام آزمایشات استاندارد، برازش مدل­های آماری نرمال و غیرنرمال به داده­های واقعی یک نوع پرتابه بررسی و مقایسه شده است. هدف دیگر این مطالعه انتخاب مدل قابلیت اطمینان مناسب، بررسی رفتار تابع نرخ خطر داده­ها و بررسی شاخص­های کارایی فرایند برای داده­های بالستیک داخلی پرتابه است. نتایج نشان می‌دهد که از میان مدل­های طول عمر کلاسیک و مدل­های میکسچر منتخب، مدل نرمال میکسچر برآوردهای بهتری نسبت به سایر مدل­ها برای پارامتر سرعت ارائه می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hazard rate behavior of interior ballistics performance based on optimal reliability modeling

نویسندگان [English]

  • Mehdi Karbasian 1
  • Hamid Dalaeli 2
  • Bijan Khayambashi 1
  • Ommolbanin Yousefi 1
چکیده [English]

The field of ballistic protection assessment is challenging due to the need of satisfying high precision requirements with a limited sample size. Identifying the probability of perforation at a specified projectile velocity is the most common way to quantify the ballistic resistance of a given protection structure. Recently several techniques have been developed for this purpose to assess perforation for all possible velocities. The main drawback of these techniques is the use of the normality assumption under which perforation velocities are expected to follow a Gaussian normal distribution where . Accordingly, any parameter of interest is estimated using the characteristic identified Gaussian distribution. In this work, Interior ballistic data obtained from real tests of intelligence mortar bomb and each selected life distributions applied to the external ballistic data, using the method of maximum likelihood to estimate the model parameters. Then, estimation results from the models compared and evaluated. Different criteria for assessing the goodness of each model investigated. The objective is to identify criteria that can distinguish which life distribution produces the best estimate of the performance of a particular armor model. Another objective of this work is to apply optimal model for obtaining different probabilities, investigating mission reliability, and studying hazard rate behavior of ballistic performance. Lifetime distributions are considered and the Mixture Normal distribution provided optimal results to assess and compare the estimations of ballistic performance data.

کلیدواژه‌ها [English]

  • interior ballistics
  • optimal reliability modeling
  • hazard rate behavior

[1] C. Farrar, D. W. Leeming, Military Ballistics-A Basic Manual, Royal Military College of Science, Shrivenham, UK: Brassey’s Defence Publishers, 1982.

[2] D. Mauchant, K. D. Rice, M. A. Riley, D. Leber, D. Samarov, A. L. Forster, Analysis of Three Different Regression Models to Estimate the Ballistic Performance of New and Environmentally Conditioned Body Armor, U.S. Department of Commerce & National Institute of Standards and Technology, 2011.

[3] B. Tahenti, F. Coghe, R. Nasri, M. Pirlot, Armor’s Ballistic Resistance Simulation Using Stochastic Process Modeling, International Journal of Impact Engineering, vol. 102, pp. 140-146, 2017.

[4] T. H. Johnson, L. Freeman, J. Hester, J. L. Bell, A Comparison of Ballistic Resistance Testing Techniques in the Department of Defense, IEEE Transactions on Reliability, vol. 2, pp. 1442-1455, 2014.

[5] B. U. Nguyen, Assessment of a Ballistic Missile Defense System, Defense & Security Analysis, vol. 30, no. 1, pp. 4-16, 2014.

[6] C. Cheng, X. B. Zhang, Interior ballistic charge design based on a modified particle swarm optimizer, Struct Multidisc Optim, vol. 46, pp. 303-310, 2012.

[7] J. Toivola, S. Moilanen, H. R. Jussila, Force, Pressure and Strain Measurements for Traditional Heavy Mortar Launch Cycle, Rakenteiden Mekaniikka (Journal of Structural Mechanics) vol. 44, no 4, pp. 309-329, 2011.

[8] R. Acharya, K. K. Kuo, Performance Dependency of 120mm Mortar System on Ambient Temperature Conditions, Journal of Applied Mechanics, vol. 77, pp. 051401-1 to 051401-9, 2010.

[9] J. R. Schmidt, M. J. Nusca, Progress Toward a Multidimensional Representation of Mortar Interior Ballistics. Weapons and Materials Research Directorate, U.S. Army Research Laboratory, ATTN: AMSRD-ARL-WM-BD. Aberdeen Proving Ground, MD 21005-5066, ARL-TR-4839, 2009.

[10] W. Kuo, M. J. Zuo, Optimal Reliability Modeling, Principles and Applications, John Wiley & Sons, 2003.

[11] H. Guo, E. Pohl, A. Gerokostopoulos, Determining the Right Sample Size for Your Test: Theory and Application, Reliability and Maintainability Symposium, IEEE Transactions on Reliability, 2013.

[12] M. V. Aarset, How to Identify a Bathtub Hazard Rate, IEEE Transactions on Reliability, vol. (R-36), nO. 1, 1987.

[13] A. W. Marshall, I. Olkin, Life Distributions Structure of Nonparametric, Semiparametric, and Parametric Families, Springer Series in Statistics, 2007.

[14] H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[15] Daniel, W. Wayne, Kolmogorov–Smirnov one-sample test, Applied Nonparametric Statistics, 2nd ed., Boston: PWS-Kent, 1990.

[16] A. Birolini, Reliability Engineering, Theory and Practice, 5th Edition, Springer, 2007.

[17] D. C. Montgomery, Introduction to Statistical Quality Control, 3th ed., John Wiley &Sons, 1996.

[18] S. Kotz, W. L. Pearn, Encyclopedia and Handbook of Process Capability Indices, a Comprehensive Exposition of Quality Control Measures, World Scientific, 2006.

[19] S. E. Somerville, D. C. Montgomery, Process Capability Indices and Non-Normal Distributions, Quality Engineering, vol. 9, no. 2, pp. 305-316, 1996.

[20] K. Rezaie, B. Ostadi, M.R. Taghizadeh, Applications of Process Capability and Process Performance Indices, Journal of Applied Sciences, vol 6, Issue 5, pp.1186-1191, 2006.