تحلیل انرژی و اگزرژی الکترولایزر غشا پلیمری در ترکیب با سیستم متمرکزکنندة خورشیدی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد / گروه مهندسی مکانیک، دانشکدة فنی و مهندسی، دانشگاه اصفهان

2 عضو هیات علمی / گروه مهندسی مکانیک، دانشکدة فنی و مهندسی، دانشگاه اصفهان

چکیده

تولید هیدروژن با استفاده از الکترولایزر‌های غشا پلیمری روشی مؤثر و مفید برای تولید یک منبع انرژی تجدیدپذیر است. از هیدروژن و اکسیژن تولیدی توسط الکترولایزر می­توان در پیل‌های سوختی در پهپادها استفاده کرد. تحلیل ترمودینامیکی الکترولایزر غشا پلیمری برای مشخص‌کردن افت‌های کلیدی و بهینه‌سازی عملکرد آن بسیار اساسی است. در این مقاله، فرایند الکترولیز آب توسط الکترولایزر غشا پلیمری در ترکیب با سیستم متمرکز خورشیدی به‌منظور تولید توان و هیدروژن مطالعه و اثر شدت تابش، چگالی جریان و دیگر پارامترهای عملکردی بر نرخ هیدروژن تولیدی بررسی‌ شده است. نتایج حاکی از آن است که با افزایش چگالی جریان و یا به‌عبارتی افزایش میزان هیدروژن تولیدی، ولتاژ الکترولایزر افزایش می‌یابد و راندمان انرژی و اگزرژی الکترولایزر کاهش می‌یابد. هم‌چنین افزایش دما، کاهش فشار و ضخامت غشای نفیونی سبب کاهش ولتاژ و بهبود عملکرد الکترولایزر می‌شود. با افزایش شدت تابش ورودی به سیستم خورشیدی به میزان 145درصد، میزان هیدروژن تولیدی 110 درصد افزایش و راندمان انرژی و اگزرژی الکترولایزر هر دو به میزان 13/8 درصد به‌دلیل بالاتر بودن نسبت جریان الکتریکی ورودی به هیدروژن خروجی کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy and exergy analyses of a proton exchange membrane (PEM) electrolyzer integrated with concentrating solar plant

نویسندگان [English]

  • Faezeh Moradi Nafchi 1
  • Ebrahim Afshari 2
  • Ehsan Baniasadi 2
چکیده [English]

Hydrogen production using PEM electrolysers is an effective method to produce a renewable energy resource. Also, the hydrogen and oxygen generated by electrlyzer can be used in a fuel cell of drones. Thermodynamic analysis of PEM electrolyzer is essential to identify key losses and to optimize the performance of the electrolyzer. In this article, the process of water electrolysis in a PEM electrolyser integrated with concentrating solar plant to produce power and hydrogen is studied and the effect of solar intensity, current density and other operating parameters on the rate of the hydrogen production is investigated. The results indicate that increase of current density and consequently the rate of the hydrogen production leads to increase of voltage and decrease of energy and exergy efficiency of the electrolyser. Also, increase of temperature, decrease of pressure and thickness of nafion membrane lead to decrease of voltage and improve the performance of electrolyser. Increase of solar intensity by 145 percent leads to increase of the rate of hydrogen production by 110 percent and decrease the exergy and energy efficiency of electrolyser by 13.8 percent.

کلیدواژه‌ها [English]

  • proton exchange membrane electrolyser
  • current density
  • energy and exergy efficiency
  • concentrating solar plant
  • solar intensity

[1] F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Solar energy, vol. 78, no. 5, pp. 661-669, 2005.

[2] I. Dincer, Green methods for hydrogen production, International journal of hydrogen energy, vol. 37, no. 2, pp. 1954-1971, 2012.

[3] S. A. Sherif, D. Y. Goswami, E. L. Stefanakos, A.  Steinfeld, Handbook of hydrogen energy, CRC Press, 2014.

[4] A. Steinfeld, Solar thermochemical production of hydrogen-a review, Solar energy, vol. 78, no. 5, pp. 603-615, 2005.

[5] A. A. AlZahrani, I. Dincer, Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol. 41, no. 19, pp. 8042-8056, 2016.

[6] A. A. Rahim, A. S. Tijani, S. K. Kamarudin, S. Hanapi, An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport, Journal of Power Sources, vol. 309, pp. 56-65, 2016.

[7] H. Janssen, J. C. Bringmann, B. Emonts, V. Schröder, Safety-related studies on hydrogen production in high-pressure electrolysersو International Journal of Hydrogen Energy, vol. 29, no.7, pp. 759-770, 2004.

[8] Z. Abdin, C. J. Webb, E. M. Gray, Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell, International Journal of Hydrogen Energy, vol. 40, no. 39, pp. 13243-13257, 2015.

[9] S. Ahmadi, A. H. Fakehi Khorasani, Optimization of the operating temperature and pressure of the PEM electrolyzer based on energy and exergy analysis, Iranina journal of Energy, vol. 18, no. 3, pp. 1-14, 2015 (in Persian).

[10] A. Godula-Jopek, Hydrogen production: by electrolysis, John Wiley & Sons, 2015.

[11] K. B. Kokoha, E. Mayousseb, T. W. Napporna, K. Servata, N. Guilletb, E. Soyezc, A. Grosjeanc, A. Rakotondrainibéc, J. Paul-Josephc, Efficient multi-metallic anode catalysts in a PEM water electrolyzer, International Journal of Hydrogen Energy, vol. 39, no.5, pp. 1924-1931, 2014.

[12] K. W. Harrison, E. Hernández-Pacheco, M. Mann, H. Salehfar, Semiempirical model for determining PEM electrolyzer stack characteristic, Journal of fuel cell science and technology, vol. 3, no. 2, pp. 220-223, 2006.

[13] N. V. Dale, M. D. Mann, H. Salehfar, Semiempirical model based on thermodynamic principles for determining 6kW proton exchange membrane electrolyzer stack characteristics, Journal of Power Sources, vol. 185, no. 2, pp. 1348-1353, 2008.

[14] Santarelli, Massimo, P. Medina, M. Cali, Fitting regression model and experimental validation for a high-pressure PEM electrolyzer, International Journal of Hydrogen Energy, vol. 34, no. 6, pp. 2519-2530, 2009.

[15] M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, F. Fouda-Onana, Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density, International Journal of Hydrogen Energy, vol. 40, no. 3, pp. 1353-1366, 2015.

[16] D. Scamman, H. Bustamante, S. Hallett, M. Newborough, Off-grid solar-hydrogen generation by passive electrolysis, International Journal of Hydrogen Energy, vol. 39, no. 35, pp. 19855-19868, 2014.

[17] T. L. Gibson, N. A. Kelly, Optimization of solar powered hydrogen production using photovoltaic electrolysis devices, International journal of hydrogen energy, vol. 33, no. 21, pp. 5931-5940, 2008.

[18] B. Paul, J. Andrews, Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply, International journal of hydrogen energy, vol. 33, no. 2, pp. 490-498, 2008.

[19] S. A. Kalogirou, Solar thermal collectors and applications, Progress in energy and combustion science, vol. 30, no. 3, pp. 231-295, 2004.

[20] A. A. AlZahrani, I. Dincer, Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol. 41, no. 19, pp. 8042-8056, 2016.

[21] A. S. Joshi, I. Dincer, B. V. Reddy, Solar hydrogen production: a comparative performance assessment, International Journal of Hydrogen Energy, vol. 36, no. 17, pp. 11246-11257, 2011.

[22] M. Ni, M. K. Leung, D. Y.  Leung, Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant, Energy conversion and management, vol. 49, no. 10, pp. 2748-2756, 2008.

[23] C. Y. Biaku, N. V. Dale,M. D. Mann, H. Salehfar, A. J. Peters, T. Han, A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer, International journal of hydrogen energy, vol. 33, no. 16, pp. 4247-4254, 2008.

[24] R. García-Valverde N. Espinosa, A. Urbina, Simple PEM water electrolyser model and experimental validation, International journal of hydrogen energy, vol. 37, no. 2, pp. 1927-1938, 2012.

[25] R. Rivero, M. Garfias, Standard chemical exergy of elements updated, International journal of Energy, vol. 31, no. 15, pp. 3310-3326, 2006.

[26] F. Marangio, M. Santarelli, M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1143-1158, 2009.

[27] T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells, Journal of Power sources, vol. 112, no. 2, pp. 583-587, 2002.