پیش‌بینی عددی ویژگی‌های الاستیک کامپوزیت‌های تقویت‌شده با نانولولة کربنی با روش چندمقیاسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / دانشکدة فنی و مهندسی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز

2 عضو هیات علمی / دانشکدة فنی و مهندسی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز

چکیده

هدف اصلی این پژوهش بررسی مدول الاستیک طولی نانوکامپوزیت‌های تقویت‌شده با نانولوله‌های کربنی زیگزاگ و آرمچیر در نسبت‌های حجمی و منظری متفاوت با شبیه‌سازی المان محدود است. برای این منظور، یک المان حجمی سه‌فازی برای مدلسازی رفتار نانوکامپوزیت به‌کار گرفته شد و از المان‌های فنری غیرخطی برای مدلسازی اتصالات محیط فاز واسط استفاده و نیروی مؤثر بین نانولوله و رزین براساس پتانسیل لنارد - جونز تعیین شد. پس از ارزیابی و صحت‌سنجی مدل، مدول الاستیک و ضریب پواسون نانوکامپوزیت‌های تقویت‌شده با نانولوله‌های کربنی زیگزاگ و آرمچیر در نسبت‌های حجمی و منظری متفاوت استخراج گردید. با افزایش نسبت‌های حجمی و منظری نانولوله، مقدار مدول الاستیک المان حجمی کامپوزیت افزایش و ضریب پواسون کاهش یافت. در نسبت‌های منظری و حجمی یکسان، مدول الاستیک کامپوزیت‌های تقویت‌شده با نانولوله‌های آرمچیر و ضریب پواسون کامپوزیت‌های تقویت‌شده با نانولوله‌های زیگزاگ بیشتر می‌باشد. همین‌طور نتایج تحقیق نشان می‌دهد که مدول الاستیک کامپوزیت مستقل از مدول الاستیک فاز واسط است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical prediction of elastic properties of carbon nanotube reinforced composites using multi-scale method

نویسندگان [English]

  • Sina Alemi Parvin 1
  • Asghar Mohammadpour Fattahi 2
چکیده [English]

The main goal of this research is study on longitudinal elastic modulus of nanocomposites reinforced with Zigzag and Armchair carbon nanotubes in different volume fractions and aspect ratios with finite element simulation. A three-phase volumetric element was used to model the behavior of the nanocomposite and used nonlinear spring strain elements to model the interfacial phase interface and the effective force between the nanotube and the resin based on the Lenard-Jones potential. After evaluation and validation of the model, the elastic modulus and Poisson coefficient were extracted from nanocomposites reinforced with Zigzag and Armchair carbon nanotubes in different volume fractions and aspect ratios. By increasing the nanotube volume fraction and aspect ratio, the amount of the elastic modulus of the composite increases. In the same aspect ratio and volume fraction, the modulus of elastic composites reinforced with armchair nanotubes and the Poisson coefficient of composites reinforced with zigzag nanotubes is higher. Also, the results of the study showed that the elastic modulus of the composite is independent of the elastic modulus of intermediate phase.

کلیدواژه‌ها [English]

  • Carbon Nanotube
  • Nanocomposite
  • Lennard-Jones
  • multi-scale
  • van der waals
[1] L. Ci, J. Bai, The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness, Compos. Sci. Technol., vol. 66, pp. 599–603, 2006.
[2] A. Selmi, C. Friebel, I. Doghri., H. Hassis, Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models, Compos. Sci.Technol, vol. 67, pp. 2071–2084, 2007.
[3] Q. Lu, B. Bhattacharya, The role of atomistic simulations in probing the smalls-cale aspects of fracture – a case study on a single-walled carbon nanotube, Eng Fract Mech, vol 72, pp. 2037–71, 2005.
[4] A. M.Fattahi, A. Najipour, Experimental study on mechanical properties of PE / CNT composites, Journal of Theoretical and Applied Mechanics, vol. 55, pp. 719-726, 2017.
[5] M. F. YU, O. Lourie, M. J. Dyer, K. Moloni,T. S. Kelly, R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, vol. 287, pp. 637–40, 2000.
[6] T. W. Tombler, C. Zhou. L. Alexeyev, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature, vol. 405, pp. 769–72, 2000.
[7] S. Azizi, A. M. Fattahi, J. T. Kahnamouei, Evaluating mechanical properties of nanoplatelet reinforced composites undermechanical and thermal loads, Computational and Theoretical Nanoscience, vol. 12, pp. 4179-4185, 2015.
[8] J. P. Lu., Elastic properties of carbon nanotubes and nanoropes, Phys Rev Lett,vol. 79, pp. 1297–300, 1997.
[9] E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of single-wall nanotubes, Appl Phys A, vol. 68, pp.287–92, 1999.
[10] Yu .I. Prylutskyy, S. S. Durov, S. S. Durov, Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes, Comput Mater Sci,Vol. 17, pp. 352-5, 2000.
[11] Susan. B. Sinnott, Chemical functionalization of carbon nanotubes, Journal of Nanoscience and nanotechnology, vol. 2, pp. 113-23, 2002.
[12] L. L. Bahr, J. M. Tour, Covalent chemistry of singlewall carbon nanotubes, Journal of Materials chemistry, vol. 12, pp. 1952-8, 2002.
[13] S. J. V. Frankland, A. Caglar, D. W. Brenner, M. Griebel, Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube polymer interfaces, Journal of physical chemistry B, vol. 106, pp. 3046-48, 2002.
[14] F. Buffa, G. A. Abraham, B. P. Grady, D. Resasco, Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites, Journal of polymer science Part B, Polymer Physics, vol. 45, pp. 490-501, 2007.
[15] M. M .Shokrieh, R. Rafiee, Stochastic multi-scale modeling of CNT/polymer composites, Computational Materials Science, vol. 50, pp. 437-446, 2010.
[16] P. D. Spanos, A. Kontsos, A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites, Probabilistic Engineering Mechanics, vol. 23 pp. 456–470, 2008.
[17] A. K. Rappe,C. J. Casewit, K. S. colwell, W. A. Goddard, W. M. Skiff, a full periodic-table force field for molecular mechanics and molecular dynamics simulations, journal of american chemical society, vol. 114, pp. 10024-10035, 1992.
[18] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science and Engineering, vol. 119, pp. 105-118, 2005.
[19] R. Rafiee, R. Pouraziz, The effect of defects on the mechanical properties, Modares mechanical engineering, vol. 13, pp. 165-175, 2013 (in Persian).
[20] M. M. Shokrieh, R. Rafiee, Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites, composite science, vol. 92, pp. 2415-2420, 2010.
[21] V. Lordi, N. Yao, Molecular mechanics of binding in carbon-nanotube-polymer composites, journal of material research, vol. 15, pp. 2770-2779, 2011.
[22] J. M. Wernik, S. A. Meguid, Multiscale modeling of the nonlinear response of nano-reinforced polymers, Acta Mechanica, Vol. 217, pp. 1-16, 2010.
[23] B. Fiedler, F. H. Gojny, M. H.G. Wichmann, M. C. M. Nolte, K. Schulte, Fundamental aspects of nano-reinforced composites, Composites Science and Technology, vol. 66, pp. 3115-3125, 2006.
[24]Y. Hu, O. A. Shenderova, Z. Hu, C. W. Padgett, D. W. Brenner, Carbon nanostructures for advanced composites, Reports On Progress In Physics, vol. 69, pp. 1847-1895, 2006.
[25] W. K. Liu, E. G. Karpov, H. S. Park, Nano Mechanics and Materials:theory, multiscale methods and application, Nano mechanics and materials, Wiley, 2006.
[26] D. Banerjee, T. Nguyen, T. Chuang, Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase’s modulus and thicknes:A finite element analysis study, computational materials science, pp. 209-218, 2016.
[27] R. F. Gibson, Principles of composite material mechanics, 2nd ed, CRC Press, 2011.