پرسی انتقال حرارت جابجایی آزاد محفظه پرشه از نانوسیال
با یک مانع با طول متغیر و تحت میدان مغناطیسی

علیرضا عرب سلغار، محمد شفیعی دهم، مهدی داوودیان
m.shafiey@vru.ac.ir

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه ولی عصر (عج)، رفسنجان،
2 کارشناسی ارشد مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد

تاریخ دریافت: 7/9/1396
تاریخ پذیرش: 15/6/1397

چکیده

کاهش وزن، ابعاد و مصرف انرژی از جمله مسائل حائز اهمیت در صنایع هوافضا (فضایهما و استیگا فضایی) است. همین موارد باید تاثیر به یک سیستم خنک‌کننده با قابلیت بالا و ابعاد کوچکتر می‌شود. نانوسیالات می‌توانند در سیستم‌های سردکننده نقش حیاتی ایفا کنند. این مقاله به بررسی عدادی جریان آرام، ابعاد و جابجایی طبیعتی نانوسیال، در یک محفظه مرغوب تخت زوایای مختلف نسبت به افق با مانعی در وسط آن برداخته شده است. در وسط محفظه، صفحات عمودی با ضخامت ناحی قرار دارد. معادلات حاکم به روش تفاضل محدود، مبتنی بر حجم کنترل جریان شده و به کمک الگوریتم سیمپل بهصورت همزمان حل شده‌اند. بر اساس نتایج حاصل از حل عدیدی، تأثیر پارامترهای جویان انتقال حرارت بررسی شده است. نسبت حجمی نانوذرات و عدد هارتمن بر میدان جریان و انتقال حرارت بررسی شده است. نتایج نشان می‌دهند که در جرخش محفظه، مکرزم انتقال حرارت وقی شدید. این مراحل در صفحات عمودی و افقی و عدد هارتمن موجب کاهش انتقال حرارت می‌شود. افزایش نسبت حجمی نانوذرات به عدد برای ممکن است عملکرد حارثی را تقویت یا تضعیف نماید.

واژگان کلیدی

جابجایی آزاد، نانوسیال، محفظه، نرخ انتقال حرارت

1 مقدمه

فضایهما و سایری از سیستم‌های دیگر به‌طور وسیع گسترش یافته است. جریان‌های جابجایی ایجادشده در سیالات متونداد تحت تأثیر میدان‌های مغناطیسی قرار گرفتند، به‌عنوان دیل بررسی جریان جابجایی در کانال‌ها بدلیل کاربرد قوی آنان در صنایع انرژی خورشیدی، میله‌های حرارتی، راکتورهای هسته‌ای، خنک‌کاری کوره‌ها و محفظه‌های اختراقی، قطعات الکترونیکی،
جریان جابجایی سیال در حضور میدان مغناطیسی بهدلیل رخداد مکرر در کاربردهای صنعتی مانند طراحی حرارتی تجهیزات الکترونیکی، تحلیل گرمایی در مخازن مینی‌گاز، عایق‌کاری حرارتی حرارتی و ذخیره‌سازی حرارتی می‌باشد. لوله‌های شوک‌دهنده، اندازه‌گیری حریان، بهینه‌سازی حرارت‌دهنده جامداتی قرار و اندازه‌گیری فشار و رطوبت، هم‌اکنون سوخت هسته‌ای اهمیت خاصی دارند.

جریان‌های هیدرودینامیک مغناطیسی در سیالات بهدلیل داشتن تأثیر مهم بر انقال و جریان سیال در موارد مختلف از آمیخته خاصی برخوردارند. به طوری که یک روش مناسب برای بررسی مکانیسم شیلنگ با سرعت مکانیسم با دستگاه‌های محوری با یک تولید توان با انرژی بالا جهت شیب‌سازی نور مافوق صوت، جریان‌های هیدرودینامیک مغناطیسی می‌باشد.

بسته به میدان مغناطیسی، در استحکام الکترونیکی و استحکام الکترونیکی بهبود گرمایی در میدان مغناطیسی با ویژگی‌های خاصی کاربردی می‌باشد. [2] باعث افزایش امکان حرارتی با توهم بوجود‌گیری فضایی برای کاربرد جابجایی الکترودینامیک که از طریق انقال سیالات استفاده می‌شود، پاتریشیا با استفاده از نانوپاره‌های جریان جابجایی طیفی هیدرودینامیک مغناطیسی می‌توان انقلا حس و جریان را کنترل نمود [3]

جابجایی آزاد در مختصات سطح‌های کاملاً در موضوعات کاربردی است: زیرا مختصات سطح‌های پرده از سیال، یکی از اصلی‌ترین لازم لازم‌تری که سیستم‌های زنده‌نشینی و مهندسی را تشکیل می‌دهد. انقال حرارت بر اثر نانوپاره‌های جابجایی جابجایی آزاد در حضور میدان مغناطیسی بدون محقق‌پذیری، کاربردهای وسیعی در متانول و فتاولو دارند. از جمله این کاربردها می‌توان به پدیده انقال گرمایی از لوله‌ها، خلوط وسایل هیدرو‌دینامیک و هم‌اکنون سیستم‌های کامپیوتری که از طریق زیرشیب‌نویسی، حرکت کریک‌کاری و سیستم‌های الکترودینامیک و جریان اینجا اشاره کرد [4]

به‌نوعی و افزایش پایه‌سازی به وسیله سیستم‌های انقال حرارتی یکی از اساسی‌ترین واقعیت‌های مهم‌ترین و طراحی‌های سیالات اجرا و پایه‌بوده است. از این‌رو، استفاده از انواع‌ترین سیستم‌های پایه‌بوده رویش غیرقابل‌درجه و درجه‌بندی انقلا حس و کوپکسیژی سیستم‌های الکترودینامیک، نشان‌دهنده شده است. کاهش وزن، ابعاد و مصرف انرژی در مسائل حائز اهمیتی در صنایع هواپیما (ماناً حیات فضاپیماهای است: همین
جایی آزاد در یک محطة مرغی محصول بال‌سراب اب- آلومینا، تحت وزن‌های مختلف نسبت به افق با یک مانع با طول متغیر و تحت میانگین ماتحیمصی مورد بررسی قرار می‌گیرد. مطالعه عدد پارامترها زمان بر جریان بال‌سراب و انتقال حرارت درون محیط‌های در گرایش‌های شریان حجمی که می‌تواند با نشان برنام کامپیوتری مناسب، هدف اصلی این تحقیق است.

2) بیان مسئله

هندهسه مورد نظر در این تحقیق، مطالعه شکل 1 محیط‌های مرغی شکل و از دست‌دهی است که یک صفحه عمومی جداکننده در وسط آن قرار دارد. ارتفاع صفحه میانگین اکست و قافلة ان از دیوارهای افقی محیط‌های با افق می‌باشد. وقتی که $\alpha = 0$ زاویه محیط‌های با افق می‌باشد. در این دیوارهای سمت چپ محیط‌های، دیوار گرم در یک نوار یکنواخت و α نوار سمت راست در دامای T_{L} است و در دیوارهای افقی ان عوامل \bar{m} مشترک محیط‌های از نانوپالس آب - آلامینا با چگالی ρ_{Nf} و از دیوارهای سمت چپ در قرار می‌گیرد. در این اثرات و در محیط‌های دیوارهای سمت راست و چپ در محیط‌های جریان جایی آزاد محیطی با پردازش نیروی تأمین دیوارهای و صفحه میانی شرط عدم فرکت برق و آب در فضای محیط‌های زیر نام می‌باشد. در این تحقیق نبات نانوپالس را عنوان یک بخش پیوسته به عادل گرمایی بین سیال یا درنا جامد لحاظ می‌شود.

همچنین در سیاست از مسئولیت مهندسی بهدلیل وجود میدان‌های الکتریکی، میانگین معنی‌داری در گران سیال افق‌مشو در سال‌های اخیر مطالعات متعددی در خصوص تأثیر میدان مغناطیسی بر جریان گرم و انتقال حرارت جایی آزاد محیطی درون محیط‌های صورت گرفته است که نتایج کلی آنها کاهش جایی آزاد و انتقال حرارت در اثر عملیات میدان مغناطیسی می‌باشند [16]. بهای [17] و سیاست‌ران و هم [18] با کمک جلد علی حسینی صورت گرفته به مطالعه اثر میدان مغناطیسی بر نرخ انتقال حرارت جایی آزاد محیطی درون محیط‌های پرتوانته و نشان داده که این انتقال حرارت با افزایش شدت میدان مغناطیسی کاهش می‌یابد.

قاسمی و همکاران [17] به بررسی جایی آزاد طبیعی، دائمی و آرام جریان در حضور یک میانگین مغناطیسی در یک محیط‌های مرغی شکل و در دامای T_{L} سر در دو طرف و دو دیوار عایق در بالا و پایین پرداختند. آنها طی این بررسی یک دستگاه به این اثرات و پردازش نیروی تأمین دیوارهای سمت چپ و با پردازش نیروی تأمین دیوارهای سمت راست و چپ در محیط‌های جریان جایی آزاد محیطی با پردازش نیروی تأمین دیوارهای سمت راست و چپ و پردازش نیروی تأمین دیوارهای سمت چپ و با پردازش نیروی تأمین دیوارهای سمت راست و چپ در محیط‌های جریان جایی آزاد محیطی با پردازش نیروی تأمین دیوارهای سمت چپ و با پردازش نیروی تأمین دیوارهای سمت راست و چپ و پردازش نیروی تأمین دیوارهای سمت چپ و با پردازش نیروی تأمین دیوارهای سمت راست و چپ و پردازش نیروی تأمین دیوارهای سمت چپ و با پردازش نیروی تامین دیوارهای و صفحه میانی شرط عدم فرکت برق و آب در این تحقیق نبات نانوپالس را عنوان یک بخش پیوسته به عادل گرمایی بین سیال یا درنا جامد لحاظ می‌شود.

برخی متغیر مانند قابلیت تغییر میدان مغناطیسی در محیط‌های سطحی و مقداری از میدان مغناطیسی در آنها قرار می‌گیرد و با یک جایی آزاد محیطی کاری می‌شود. با توجه به شکل شکل 1. هندسه مورد نظر در این تحقیق، مطالعه شکل 1 محیط‌های مرغی شکل و از دست‌دهی است که یک صفحه عمومی جداکننده در وسط آن قرار دارد. ارتفاع صفحه میانگین اکست و قافلة ان از افق می‌باشد. وقتی که $\alpha = 0$ زاویه محیط‌های با افق می‌باشد. در این دیوارهای سمت چپ محیط‌های، دیوار گرم در و α دیوار سمت راست در دامای T_{L} است و در دیوارهای افقی ان عوامل \bar{m} مشترک محیط‌های از نانوپالس آب - آلامینا با چگالی ρ_{Nf} و از دیوارهای سمت چپ در قرار می‌گیرد. در این اثرات و در محیط‌های دیوارهای سمت راست و چپ در محیط‌های جریان جایی آزاد محیطی با پردازش نیروی تأمین دیوارهای و صفحه میانی شرط عدم فرکت برق و آب در این تحقیق نبات نانوپالس را عنوان یک بخش پیوسته به عادل گرمایی بین سیال یا درنا جامد لحاظ می‌شود.
3. معادلات اساسی حاکم بر جریان سیال نانو

معادلات حاکم بر جریان آرام دو بعدی و درون محفظه، با فرض سیال نیوتنی غیر قابل تراکم و به تفاوت: این معادلات پیوستگی:

\[\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0 \] (1)

موتیم در راستای X:

\[U_{\frac{\partial U}{\partial X}} + V_{\frac{\partial U}{\partial Y}} = -\frac{\partial P}{\partial X} \] (2)

موتیم در راستای Y:

\[U_{\frac{\partial V}{\partial X}} + V_{\frac{\partial V}{\partial Y}} = -\frac{\partial P}{\partial Y} \] (3)

معادله انرژی:

\[U_{\frac{\partial T}{\partial X}} + V_{\frac{\partial T}{\partial Y}} = \frac{\alpha_f}{c_f} \left(\frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2} \right) \] (4)

بطوری که متغیرهای گام این معادلات

عبرات آن‌ها:

\[X = \frac{\nu}{H}, \quad Y = \frac{\nu}{H}, \quad U = \frac{\nu U}{\alpha_f}, \quad V = \frac{\nu V}{\alpha_f}, \] (5)

\[P = \frac{\rho L^2}{\rho_f c_f^2}, \quad \theta = \frac{T - T_c}{T_h - T_c} \] (6)

در روابط بالا، \(L \) طول محفظه و \(\alpha_f \) ضریب یکپارچه سیال خاص است. در عادت این اعتماد نیست در ادامه آدم است:

\[Pr = \frac{V_f}{\alpha_f}, \quad Ra = \frac{\beta_f}{\alpha_f} \] (7)

\[Ha = \frac{B_0 H}{V_f \rho_f} \] (8)

4. شرایط مرزی

شرایط مرزی برای \(\alpha = 0 \) برای مرزهای:

- \(\partial \nu / \partial y = 0 \)
- \(\nu / \partial y = 0 \)
- \(\nu / \partial y = 0 \)
- \(\nu / \partial y = 0 \)

5. روابط مربوط به خواص نانوپیل

همان‌طور که از معادلات حاکم بر سیال دیده می‌شود، برای حل معادلات نیاز به خواص پروپزیتیک نانوپیل است. چگالی، ضریب انباشته حجمی، ظرفیت حرارتی و ضریب پخش حرارتی

\[Nu_i = \frac{h \xi}{k_f} \] (9)

که در رابطه 8 ضریب انتقال حرارت جامجمانی از رابطه 9 بیرونی می‌کند.

\[h = \frac{q_w}{T_h - T_c} \] (10)

پس از سادسازی رابطه 11 بندست می‌آید.

\[Nu_y = -\frac{k_f}{k_f} \left(\frac{\partial \theta}{\partial X} \right) \] (11)

نوشت متوسط روی دیواره گرم از انتگرال گیری معادله بالا روي دیواره گرم محفظه بهصورت زیر حاصل می‌شود:

\[Nu_m = \frac{1}{2H} \left[\int_0^H \left(\frac{\partial \theta}{\partial X} \right)_X \mathrm{d}X + \int_0^H \left(\frac{\partial \theta}{\partial X} \right)_Y \mathrm{d}Y \right] \] (12)

\[= \frac{1}{H} \left[\frac{k_f}{H} \left(\int_0^H \left(\frac{\partial \theta}{\partial X} \right)_X \mathrm{d}Y \right) \right] \] (13)

نشریه علمی پژوهشی دانش و فناوری هواپیما

37
7. نتایج

برای حل عدید معادلات و اجرای الگوریت姆 مورد نظر یک برنامه کامپیوتری به زبان فورتئن نوشته شده است. برای انتخاب شبکه حل مناسب، ابتدا بررسی تعداد پرتو ابتدا و مقدار ماکزیم نیاز بررسی شد. این بررسی به ازای $\psi = 0.03$ صورت گرفت و نتایج آن در شکل 2 نمایش داده شده است. همانگونه که مشاهده می‌شود، برای شبکه‌های

در زیرت از 110×110 تاقی‌سیبیون قابل ملاحظه‌ای نمی‌کند و به‌جای انجام شبکه‌های کوچک‌تر برای بررسی این تاقی‌سیبیون انجام می‌شود. به‌خصوص در محیط دیواره‌ای، بستگی به سایر واژگان مربوط به طبیعت محدوده مذاکش است.

در مواردی که شرایط انتخاب شده است، جهت سطح سطوح مصرفی کمک دارد. در اینجا به برخی از آنها اشاره می‌شود. ابتدا محفظه‌ی دریابه‌بندی اقیان، در دو دام مختلف (دماي دیواره در و Ra = $10^5,10^6,10^7$) بیان شده است. محیط و در جدول 2، تاقی‌سیبیون می‌تواند در محیط مصرفی مقاومت آب و لنز مورد استفاده در این سلسله در جدول 1 آمده است.

جدول 1. خواص ترموفیزیکی آب و آلومینا

<table>
<thead>
<tr>
<th>آب</th>
<th>c_p (J/kg.K)</th>
<th>(\rho) (kg/m³)</th>
<th>k(W/m.k)</th>
<th>(\beta) (1/K)</th>
<th>a(m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>9971</td>
<td>1000</td>
<td>0.643</td>
<td>2.798 x 10⁻⁵</td>
<td>1.77 x 10⁻⁹</td>
</tr>
</tbody>
</table>

8. روش عدید

معادلات حاکم هر یک از پروانه‌های اختراف محدود مسئول یک کنترل جی‌ای شده‌اند. میانگین حلق بر روی شبکه جابجایی به عنوان شکاف در تقاطع اصلی شبکه مشخص می‌شود. جهت حالت مقاومت معادلات جی‌ای‌ها، آن‌ها沿کورتیمی سیمیلی که محاسبه کامل آن در مرحله پنج‌مین استفاده شده است. همگرایی هنگام حاصل می‌شود که مجهول محاسبه می‌شود در دو مرحله تولیدی به دو دام تابعی برابر باشد. در حل معادلات حاکم پس‌بندی عناصر از مقدار محاسبه شده در تکرار قبل
ب) تغییر زاویه محفظه نسبت به افق و پاداشی $135 \leq \alpha \leq 0$ و $Ra = 10^5$, $\varphi = 0.02$, $Hm = 0.7$، $M = 0.5$، $N_{Max} = 0.5$، در شکل 4 به پرستعمال اثر زاویه برداشت. می‌تواند $Ha = 25$ خطوط جریان و خطوط هدایت رسم شده است. وقتی تا که صفحه

جدول 2. نوست متوسط روز دیوار گرم برای محفظه مربوط به سیال هوا در

<table>
<thead>
<tr>
<th>زاویه</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>115</td>
<td>272</td>
<td>373</td>
</tr>
<tr>
<td>φ</td>
<td>118</td>
<td>275</td>
<td>373</td>
</tr>
<tr>
<td>Ha</td>
<td>114</td>
<td>275</td>
<td>373</td>
</tr>
<tr>
<td>Ra</td>
<td>118</td>
<td>275</td>
<td>373</td>
</tr>
<tr>
<td>N_{Max}</td>
<td>118</td>
<td>275</td>
<td>373</td>
</tr>
</tbody>
</table>

جدول 3. تابع جریان ماکزیمم به ازار زاویه‌های مختلف محفظه

<table>
<thead>
<tr>
<th>زاویه</th>
<th>صفر</th>
<th>35</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$8/0/12$</td>
<td>$0/1/255$</td>
<td>$0/1/35$</td>
</tr>
<tr>
<td>φ</td>
<td>$2/0/12$</td>
<td>$0/1/255$</td>
<td>$0/1/35$</td>
</tr>
<tr>
<td>Ha</td>
<td>$2/0/12$</td>
<td>$0/1/255$</td>
<td>$0/1/35$</td>
</tr>
<tr>
<td>Ra</td>
<td>$2/0/12$</td>
<td>$0/1/255$</td>
<td>$0/1/35$</td>
</tr>
</tbody>
</table>

میانی داخل تکه محفظه قرار می‌گیرد. به‌دلیل شرط عدم فضای سرعت، درونی گردابه ضخامت بیش از اطراف صفحه میانی تشکیل می‌شود. در عین حال یک گردابه ساختگرد که این دو گردابه رو دربردارد کل محفظه را اعمال کرده است. مقایسه خطوط جریان و

$Ha = 30$, $Ra = 10^5$, $\varphi = 0.03$ و $Hm = 0.5$، برای طول صفحه 50 و $Hm = 0.5$، برای طول صفحه 50 و $Hm = 0.5$، برای طول صفحه 50 و $Hm = 0.5$.
علیرضا عرب سلغار، محمد شفیعی دهج، مهدي داوودیان

خطوط هیدوما نشان می‌دهد که در تغییر زاویه محفظه از صفر درجه به 45 درجه ماکزیمم تابع جریان و سرعت جریان افزایش پیدا کرده و در نتیجه این مقدار انقلاب جریان ناشی از جابجاگرایی افزایش پیدا خواهد کرد و خطوط هیدوما با شیب ملایم تری نسبت به محور X نمایان خواهد شد. در شکل ۵ پروپیل مؤلفه عمودی سرعت دوی محفظه در ناحیه دوی گرم ردیم و در آن سمت می‌شود. با توجه به شکل ۵ دیده می‌شود که با تغییر زاویه محفظه از صفر به ۱۳۵ درجه سرعت جریان افزایش پیدا کرده است. صفحه مباین درون

ennesal 2 و 3 شکل ۴ خطوط جریان (چپ) و همدما (راست) در ۸۰، ۹۰، ۱۰۰ و ۱۲۵ (در هر دو یک نکته از بالا به پایین)

انقلاب جریان برای α = ۹۰° = α سیستم می‌پیدا درد. در شکل ۸ خطوط هیدوما و خطوط جریان در زاویه‌های متفاوت با هم مقایسه شده‌اند. برای این که یک چرخاندن شکل محضه از زاویه‌ای متفاوت و مالیت دانان با هم از یک جریان، به قباصل خطوط جریان و خطوط هیدوما برداخته شده است. با توجه به شکل ۸ در تغییر زاویه محضه از صفر به ۱۲۵ درجه در تمامی حالات خطوط جریان افزایش پیدا کرده و سرعت جریان درون محضه افزایش پیداکرده است. در نتیجه فاصله زیرا در تمامی موارد جریان مربوط به خط چین فشار در از خط پر است. در مورد مقایسه خطوط هیدوما در شکل ۷ توضیحات شکل ۴ و ۵ با تغییر زاویه محضه از صفر به ۱۳۵ درجه مشاهده می‌شود که توسیع مقویت برای α = ۱۲۵ درجه در منحنی زیری پیشرفت از توسیع مقویت صفر و ۹۰ درجه است. با توجه به مطلوبی بایستی به نظر می‌رسد قرار دادن محضه بطری که با افق داریز وزاوی به دانش‌آموز معموله انتقال حرارت کمک خواهد کرد. در جدول ۳ با مقایسه اعداد نوسیل متوسط ماکزیمم انتقال حرارت برای α = ۱۳۵° = α و ۱۳۵° را می‌نماییم.
حالات سیوشی پیدا کرده است و این باعث کاهش انرژی حرارتی شده است. برای سایر موارد نیز چنین تغییری حکم نمی‌گردد. میدان منفی‌هایی به‌دنبال ایجاد نیروی لوتز، تأثیر بسزایی در میدان و حجب و به تبع ان میدان دما دارد. در ادامه به آزی مقدار $\varphi = 0.02$ و $\alpha = 0$، $Ra = 10^5$، $H_m = 0.7$ و در Hارمهای متغیر در زاویه و گوناگون به تأثیر عدد هارتیون بر میدان جریان و انرژی حرارتی پرداخته شده است.

کمیت شیب خطوط ه والذي نسبت به افق، نشان از افزایش انرژی حرارت و در جایی که خطوط ه الذي با شیب بیشتری نسبت به افق هرکته کرده است نشان کاهش انرژی حرارت دارد. با دقت در شکل 8 هر کاهش می‌شود که این مقدار مختصره از $\alpha = 0$ به $\alpha = 45$، خطوط ه الذي با هم سه‌تایی های هم‌سایه می‌شود. در حالت انتقال حرارت دارد. در شکل 8 و در جرخت 90 درجه‌ای محفظه خطوط ه الذي تغییر شکل داده و

شکل 5 پروپف سرعت عمودی در راستای محور افقی و در $Y = 0.5$.

شکل 6 تغییرات دمایی به بعد در راستای محور افقی و در $Y = 0.5$.

شکل 7 نوسان موضعی دیوار گرم برای تغییر زاویه محفظه.

برای این‌منظور عدد هارتیون در بین $75 \leq Ha \leq 0$ تغییر داده شده است. با دقت در داده‌های جدول 2 مشاهده می‌شود که در $\alpha = 0$ تابث از افزایش عدد هارتیون، هم‌سایه کاهش پیدا می‌کند. و وجود میدان منفی‌هایی سبب ایجاد نیروی لوتز می‌شود که این به وجود بوجود می‌گردد. هم‌سایه در معادله میدان در راستای $Y = 0$، با دقت و وجود میدان منفی‌هایی سبب کاهش سرعت و قدرت جابجایی سیال می‌شود. در شکل 9 نوسان موضعی دیوار گرم در هارتیون‌های مختلف رسم شده است که با توجه به توصیحات ارائه‌شده با افزایش هارتیون، نوسان

نشریه علمی پژوهشی دانش و فناوری هوافضا 36
دیگر است. در انتقال حرارت در \(\alpha = 135^\circ \) صورت می‌گیرد، ومی‌توانیم از عوامل جریان حرارتی از جمله فاصله از میدان‌ها، مانند بافت‌های گازی، میزان انرژی سیستم و میدان‌ها انتقال حرارت را کنترل کنیم. در اینجا میدان‌های سیستم بیشتر به‌عنوان میدان‌های سیستم مقایسه‌شده است.

\[
\begin{align*}
\alpha &= 0^\circ \\
\alpha &= 90^\circ \\
\alpha &= 135^\circ \\
\alpha &= 45^\circ \\
\alpha &= 45^\circ \\
\alpha &= 135^\circ \\
\end{align*}
\]

شکل 8. مقایسه خطوط جریان (چپ) و خطوط همگام (راست) برای

\[
\begin{align*}
\alpha &= 0^\circ \\
\alpha &= 90^\circ \\
\alpha &= 135^\circ \\
\alpha &= 45^\circ \\
\alpha &= 45^\circ \\
\alpha &= 135^\circ \\
\end{align*}
\]
مشاهده می‌شود که با تغییر α افزایش متوازن رفتارهای متقارنی از خود داشته‌ایم. این نتیجه برای α کاوش و برای $Ra = 10^4$, 10^5 توجه به شکل یک $Ra = 10^4$, 10^5 ماکزیمم انتقال حرارت به‌خصوص در زاویه‌های مصرف و سپس 90 درجه اتفاق در می‌افتد. این در حالی است که در $Ra = 10^5$ حرارت در زاویه 135 درجه پیشرفت از طرف در یک زاویه تابیت، با افزایش عدد ریلی، نسبت نوسان متوسط این انتقال حرارت و سپس کاوش می‌یابد. در واقع وقتی میدان متناوب وجود داشته باشد، افزایش عدد ریلی از طرف سیب افزایش جابجایی می‌شود و از طرف دیگر بدلیل وجود ترمینوسV هم و V افزایش یابد، تأثیر این جمله منفی بهترین می‌شود و سپس تضعیف جابجایی در جهت V می‌گردد.

$$\alpha = 0\, Hm = 0.70, \phi = 0.02, Ra = 10^5$$

شکل 9. نوسان متوسط روی دیوار گرم در $\alpha = 0\, Hm = 0.70, \phi = 0.02, Ra = 10^5$

جدول 4. تغییرات نوسان متوسط و ناب جریان ماکزیمم به ازای هارتمان‌های مختلف

<table>
<thead>
<tr>
<th>صفر</th>
<th>25</th>
<th>50</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/20-60</td>
<td>2/1841</td>
<td>2/2385</td>
<td>2/7851</td>
</tr>
<tr>
<td>0/60-60</td>
<td>2/8699</td>
<td>2/3573</td>
<td>2/0752</td>
</tr>
<tr>
<td>0/75-125</td>
<td>2/8687</td>
<td>3/6663</td>
<td>1/5238</td>
</tr>
<tr>
<td>0/60-125</td>
<td>2/9325</td>
<td>3/6852</td>
<td>1/0308</td>
</tr>
</tbody>
</table>

جدول 5. تغییرات حاجیان متوسط و ناب جریان ماکزیمم به ازای هارتمان‌های مختلف

<table>
<thead>
<tr>
<th>صفر</th>
<th>25</th>
<th>50</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/20-60</td>
<td>2/1841</td>
<td>2/2385</td>
<td>2/7851</td>
</tr>
<tr>
<td>0/60-60</td>
<td>2/8699</td>
<td>2/3573</td>
<td>2/0752</td>
</tr>
<tr>
<td>0/75-125</td>
<td>2/8687</td>
<td>3/6663</td>
<td>1/5238</td>
</tr>
<tr>
<td>0/60-125</td>
<td>2/9325</td>
<td>3/6852</td>
<td>1/0308</td>
</tr>
</tbody>
</table>

چون تغییر نسبت حجمی نانویی‌های مختلف به تغییر خواص ترموفیزیکی نانوسیال مطابق با روابط 17 تا 17 می‌شود، موجب تأثیر قابل ملاحظه‌ای بر میدان جریان و انتقال حرارت نانوسیال نشانه.
علیرضا عرب سلغار، محمد شفیعی دهج، مهدی داودیان

می‌بود که افزایش ρ باعث افزایش Ψ بوده و در طرفین طبق رابطه‌رای 2 و 3 سرعت V با ρnu رابطه مستقیم و با μ رابطه معکوس دارد. در این مورد خاص به این صورتی که از تابیت در نظر گرفته شده افزایش Ψ و سیکوزیتی سبب کاهش شده است در حالی که واقعیت نیز امکان برهنگی است.

$Ra = 10^4, 10^5, \alpha \leq 135, \varphi \leq 0.06$ در نظر گرفته می‌شود. در شکل 13 مشاهده می‌شود که با افزایش Ψ_{max} $Ra = 10^4$، $\alpha = 135$ کاهشی بیشتری در رابطه Ψ بدست دارد. افزایش سیکوزیتی Ψ_{max} کم می‌شود با دقت در رابطه‌رای 12 و 18 متوسط

جدول 5: تغییرات نوسانات حاصل در زاویه ماکزیمم به ازای رابطه‌رای مختلف

<table>
<thead>
<tr>
<th>α</th>
<th>φ</th>
<th>Ψ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.06</td>
<td>1/1810</td>
</tr>
<tr>
<td>1.5</td>
<td>0.06</td>
<td>1/1815</td>
</tr>
<tr>
<td>2.0</td>
<td>0.06</td>
<td>1/1820</td>
</tr>
<tr>
<td>1.0</td>
<td>0.06</td>
<td>1/1810</td>
</tr>
<tr>
<td>1.5</td>
<td>0.06</td>
<td>1/1815</td>
</tr>
<tr>
<td>2.0</td>
<td>0.06</td>
<td>1/1820</td>
</tr>
</tbody>
</table>

شکل 12. تغییرات عدد ناسلات متوسط به بعد مشاهده می‌شود در زاویه مختلف

شکل 11. تغییرات عدد ناسلات متوسط به بعد مشاهده می‌شود در زاویه مختلف

شکل 13. تغییرات عدد ناسلات متوسط به بعد مشاهده می‌شود در زاویه مختلف

سلام هشتم، شماره اول، بهار و تابستان 1398

39
جلد ۶ نیست تابع جریان ماکزیمم به جریان ماکزیمم (\(\alpha = 0^\circ \) در دو زوايا و عده‌ها راپی متفاوت
\[\frac{\text{Nu}_{m}}{\text{Nu}_{m}(\alpha=0.00) < 1.0} \]
\[\text{ عدد } \alpha = 135^\circ \text{ تا } \alpha = 0^\circ \text{ برای } \text{ Ra = 10}^5 \]

جلد ۷ نیست تابع متوسط به نوسیم متوسط در \(\alpha = 0^\circ \) در دو زوايا و عده‌ها راپی متفاوت
\[\frac{\text{Nu}_{m}}{\text{Nu}_{m}(\alpha=0.00) < 1.0} \]

جلد ۸ تغییرات عدد نسل متوسط برای کشی‌های متفاوت حجمی نانوذرات در دو زوايا متفاوت و عده‌ها راپی ۱۰° و ۱۵°

\[\text{Nu}_{m}/\text{Nu}_{m}(\alpha=0.00) \geq 1.0 \]
نتیجه آن جامبایی کاهش پیدا می‌کند از طریق باعت افزایش هدایت می‌شود. در یک زاویه تابی و در ریل‌های کوچک، با افزایش φ هدایت افزایش جامبایی کاهش پیدا می‌کند. حین هدایت در تمام محظوطه حاکم است در نتیجه آن نوسیب مؤسوم و دری ای نوسیب مؤسوم افزایش می‌یابد. در ریلی $Ra = 10^5$ نوسیب مؤسوم هدایت مکانیزم غلب نیست باید افزایش φ نوسیب مؤسوم عموماً کاهش یافته و نوسیب مؤسوم نیز کاهش یافته است. با تغییر می‌کند از طرفی افزایش φ جامبایی را کاهش و هدایت را افزایش می‌دهد در زاویه $\alpha = 0°$ مکانیزم در جهت X در ریلی $Ra = 10^5$ و $\sin \alpha$ در ریلی $Ra = 10^5$ مکانیزم در جهت Y در سایر موارد هر دو جمله ارگنیا می‌شود، که به‌طور تأثیر با افزایش φ و جرخه محظوظه در زاویه خود را نشان می‌دهد.

$\frac{Nu_m}{Nu_m(\phi=0)} = \frac{RaPr}{\beta \rho_n \rho_f}$

شکل 14. تغییرات عدد نوسیب در زاویه دلخواه برای کسرهای مختل حجمی نانوذرات

شکل 15. تغییرات عدد نوسیب در زاویه دلخواه برای کسرهای مختل حجمی نانوذرات
نتیجه‌گیری
در این بررسی، به گریزان گابایی آزاد درون یک محیط با یک مانع و در وسط محیط به روش عددی پرداخته شد. نتایج بدست آمده را می‌توان به نظریه زیر مجهز دید. در تغییر زاونه محیط و برا ۱۰۵ محیط‌های مرجع در دو محیط با یک مانع در زاویه ۴۵ درجه (α = 135°) باشد. با توجه به حجم و کاربرد محیط در صورتی که امکان قراردادن محیط با زاویه
دلخواه و به‌عنوان باشد، برای عملکرد بهتر در انتقال حرارت، بهترین حال در تسریع انتقال حرارت و قطع صورت می‌یابد که
صحنه آدابیاتی با افق بازی زاویه صفر باشد. در حالی که
محیط تحت میدان مانگانیسی نیاز به شیرین انتقال حرارت
حالات وقیعی است که صفحه آدابیاتی با افق زاویه ۴۵ دراد، اما
وقتی نانوایان بدون محیط تحت میدان مانگانیسی باشد، بهترین حال انتقال حرارت در زاویه محیط ۱۳۵ درتو
می‌یابد. در هر هر از اینها، انتقال حرارت برای هر دو حالت
۴۵ و ۱۳۵ درجه تقریباً یکسان می‌باشد و تفاوتی جدی مشاهده

M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosur, *International
پرسی انتقال حرارت محبوس آزاد پر شده از نانوپال با یک مانع با طول متغیر و تحت میدان مغناطیسی