بررسی دقت روش‌های غیردائم تحلیلی و شبه‌دائم در فرکانس کاسته مختلف و اثر تراکم‌پذیری و تصحیح آن بر این روش‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر ارشد / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

2 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

چکیده

پاسخ غیردائم ائرودینامیکی مقاطع بال دوبعدی نوسانی کاربردهای فراوانی در حوزه‌های دانشی ائرودینامیک بالگرد و ائروالاستیسیته دارد. با توجه به زمان‌بر بودن انجام تحلیل‌های عددی غیردائم، به‌کارگیری پاسخ‌های تحلیلی غیردائم یا شبه‌دائم از نظر مهندسان مطلوب‌ترند که البته بسته به نوع مسئله درصدی خطا دارد. در این پژوهش پاسخ‌های روش غیردائم تحلیلی و شبه‌دائم برای ایرفویل نوسانی دارای حرکت پلانج و تاب در فرکانس کاسته مختلف و دو ماخ تراکم‌ناپذیر و تراکم‌پذیر به‌دست آمده و تصحیح تراکم‌پذیری بر این‌ روش‌ها انجام شده است. یک کد عددی غیرلزج نیز برای حل مسائل غیردائم مرز متحرک مبتنی بر روش حجم محدود اختلاف مرکزی و استفاده از فرمولاسیون لاگرانژی - اویلری دلخواه توسعه داده شده است تا نتایج تحلیل غیردائم و شبه‌دائم با این روش مقایسه شود. انتگرال‌گیری زمانی تحلیل عددی با استفاده از یک روش ضمنی کارآمد دوزمانه انجام شده است. روش تحلیلی تئودرسن به‌عنوان روش تحلیلی غیردائم در نظر گرفته شده است. نتایج نشان می‌دهد که روش عددی حجم محدود حل دقیقی ارائه می‌کند و در میان روش‌های شبه‌دائم و تحلیلی غیردائم، روش تحلیلی غیردائم دقت مناسبی دارد و در جریان‌های تراکم‌پذیر با اصلاح تراکم‌پذیری دقت روش تحلیلی غیردائم تا حدی بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of analytical unsteady and quasi-steady methods accuracy at different reduced frequencies and effect of compressibility and its correction on these methods

نویسندگان [English]

  • Mahdi Hashemabadi 1
  • Mostafa Hadidoolabi 2
1 Ph.D / Space Research Institute, Malek Ashtar University of Technology
2 Associate Professor / Space Research Institute, Malek Ashtar University of Technology
چکیده [English]

Responses of airfoils unsteady aerodynamics have important role in rotary-wing and aeroelasticity problems. Numerical analysis of unsteady flows usually needs more time. Therefore, engineering use quasi-steady and analytical methods for solving oscillatory airfoils. In the present research, the responses of the analytical unsteady and quasi-steady methods are calculated for plunge and pitch motions at different reduced frequencies and Mach numbers. One of Mach numbers is incompressible and the other is compressible. Compressibility correction is also applied for compressible Mach number. A numerical inviscid code is developed based on central finite volume method to solve unsteady flow equations in the arbitrary Lagrangian-Eulerian formulation for moving boundary problems. The results of the quasi-steady and analytical unsteady methods are compared with numerical code results. An implicit dual time scheme is applied for time discretization in CFD code. The analytical unsteady method is chosen Theodorsen method. Results show the finite volume method is an accurate method and the analytical method is in good agreement with numerical code in incompressible flows. The compressibility correction improve the results in compressible flows.

کلیدواژه‌ها [English]

  • Numerical unsteady solution
  • quasi-steady method
  • analytical method
  • Euler equations
  • plunge and pitch motions

[1] W. P. Walker, Unsteady Aerodynamics of Deformable Thin Airfoils, University Libraries, Virginia Polytechnic Institute and State University, 2009.

[2] Ü. Gülçat, Fundamentals of modern unsteady aerodynamics, Springer; 2016.

[3] J. G. Leishman, Principles of Helicopter Aerodynamics, Cambridge university press; 2006.

[4] J. T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA journal, Vol. 28, No. 8, pp. 1381-1388, 1990.

[5] L. Dubuc, F. Cantariti, M. Woodgate, B. Gribben, K. Badcock, B. Richards, Solution of the unsteady Euler equations using an implicit dual-time method, AIAA journal, Vol. 36, No. 8, pp. 1417-1424, 1998.

[6] M. Hashemabadi, M. Hadidoolabi, Efficient Gridless Method Using Constrained Weights Optimization for Two-Dimensional Unsteady Inviscid Flows at Low Angles of Attack, Journal of Aerospace Engineering, Vol. 30, No. 5, 2017.

[7] A. Patel, B. Leonard, M. Delanaye, C. Hirsch, Unstructured unsteady adaptive simulations for external aerodynamics, Proceedings of the ECCOMAS Conference, Barcelona, Spain, September 11-14, 2000.

[8] A. Jahangirian, M. Hadidoolabi, Unstructured moving grids for implicit calculation of unsteady compressible viscous flows, International Journal for Numerical Methods in Fluids, Vol. 47, No. 10-11, pp. 1107-1113, 2005.

[9] Z. H. Ma, H. Wang, S. H. Pu, A parallel meshless dynamic cloud method on graphic processing units for unsteady compressible flows past moving boundaries, Computer Methods in Applied Mechanics and Engineering, Vol. 285, pp. 146-165, 2015.

[10] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, K. C. Giannakoglou, Unsteady CFD computations using vertex centered finite volumes for unstructured grids on Graphics Processing Units, International Journal for Numerical Methods in Fluids, Vol. 67, No. 2, pp. 232-246, 2011.

[11] A. Guardone, D. Isola, G. Quaranta, Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping, Journal of Computational Physics, Vol. 230, No. 20, pp. 7706-7722, 2011.

[12] T. D. Economon, F. Palacios, J. J. Alonso, Unsteady aerodynamic design on unstructured meshes with sliding interfaces, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Texas, USA, January 7-10, 2013.

[13] D. Isola, A. Guardone, G. Quaranta, Finite-volume solution of two-dimensional compressible flows over dynamic adaptive grids, Journal of Computational Physics, Vol. 285, pp. 1-23, 2015.

[14] A. Abdelkefi, R. Vasconcellos, A. H. Nayfeh, M. R. Hajj, An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system, Nonlinear Dynamics, Vol. 71, No. 1-2, pp. 159-173, 2013.

[15] C. Yang, C. Song, Z. Wu, C. Xie, Application of output feedback sliding mode control to active flutter suppression of two-dimensional airfoil, Science China Technological Sciences, Vol. 53, No. 5, pp. 1338-1348, 2010.

[16] H. Haddadpour, R. Firouz-Abadi, Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow, Thin-walled structures, Vol. 44, No. 9, pp. 931-936, 2006.

[17] M. R. Nabawy, Crowther WJ. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation. Journal of The Royal Society Interface, Vol. 11, No. 94, 2014.

[18] S. Fazelzadeh, A. Rasti, H. Sadat-Hoseini, Optimal Flutter Suppression of Nonlinear Typical Wing Section Using Time-Domain Finite Elements Method, Journal of Aerospace Engineering, Vol. 27, No. 5, 2013.

[19] A. McFarlane, An Algorithm for Preliminary Aeroelastic Analysis of Composite Wind Turbine Blades, Carleton University Ottawa, 2015.

[20] M. S. Sartakhti, A. Fakhar, Aeroelasitc analysis of aircraft wing and its flaps using Euler-Bernouli beam function, 2nd conference of mechanical engineering, Islamic Azad University, Natanz, 2015 (in Persian فارسی)

[21] A. Jameson, D. Mavriplis, Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, AIAA journal, Vol. 24, No. 4, pp. 611-618, 1986.

[22] J. Blazek, Computational fluid dynamics: principles and applications, Butterworth-Heinemann, 2015.

[23] F. J. Blom, Considerations on the spring analogy, International journal for numerical methods in fluids, Vol. 32, No. 6, pp. 647-668, 2000.

[24] J. Katz, A. Plotkin, Low-speed aerodynamics, Cambridge University Press, 2001.

[25] I. H. Tuncer, M. F. Platzer, Thrust generation due to airfoil flapping, AIAA journal, Vol. 34, No. 2, pp. 324-331, 1996.