بررسی عددی تأثیر گرمایش آیرودینامیکی بر روی توزیع دمای داخل کابین پرنده مافوق صوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی

2 دانشجوی کارشناسی ارشد / دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی

چکیده

در این مقاله تأثیر گرمایش آیرودینامیکی به توزیع دمای داخل کابین  پرنده مافوق صوت در حالت­های مختلف عایق­بندی، وجود نیروی گرانش و ارتفاع پروازی به روش دینامیک سیالات محاسباتی با رویکرد حجم محدود پرداخته شده است. برای حل همزمان معادلات در جامد و سیال، از شرط مرزی کوپلینگ در دیواره­ی پوسته استفاده شده است. هوا به صورت گاز ایده­آل فرض شده و رابطه بوزینسک برای تغییرات چگالی آن با دما بکار­گرفته شده است. تغییرات توزیع دمای درون کابین با لحاظ انتقال حرارت جابجایی آزاد به صورت گذرا تا لحظه پروازی 70 ثانیه شبیه­سازی شده است. نتایج به صورت توزیع دما در مقاطع میانی مدل و نمودارهای دما-زمان و دما-مکان در مقاطع میانی و زمان­های گوناگون ارائه شده است.  بررسی نتایج نشان می­دهد که استفاده از عایق موجب کاهش دمای یک نقطه مشخص از کابین به میزان 175 درجه در لحظه پرواز 20 ثانیه می­شود. در این تحقیق از دو روش تجربی و عددی برای صحه­گذاری روی توزیع دما در درون مدل و خارج مدل استفاده شده که دقت خوبی را در نتایج نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical analysis of aerodynamic heating effects on temperature distribution inside the ultrasonic bird cabin

نویسندگان [English]

  • Miralam Mahdi 1
  • Majid Rahimi 2
1 Assistant Professor, Mechanical Engineering Department, Shahid Rajaee Theacher Training University
2 Graduated Student, Mechanical Engineering Department, , Shahid Rajaee Theacher Training University
چکیده [English]

In this paper, the effect of aerodynamic heating on temperature distribution inside supersonic bird cabin in different insulation conditions, the existence of gravity force and different flight height has been investigate using a computational fluid dynamics method with the finite volume approach. The coupling boundary condition in the shell wall use to simultaneously to solve the equations in solid and fluid. The air assumed as an ideal gas and the Boussinesq approximation used to changes density with temperature. In-cabin temperature distribution changes in terms of the free Convection heat transfer is simulated transiently up to a flying time of 70 seconds. The results are presented as temperature contour in the middle section of the model, temperature-time and temperature-location diagrams for different times. In this research, experimental and numerical methods are validated the temperature distribution inside and outside the model, which shows good accuracy.

کلیدواژه‌ها [English]

  • aerodynamic heating
  • free convection
  • supersonic
  • computational fluid dynamics
[1] J.G. Bernard, W. Paul ,  Parabolized Navier-Stokes Computation of Surface Heat Transfer Characteristics for Supersonic and Hypersonic KB Projectiles, US Army Research Laboratory, August 1993, Report Number ARL-TR-191
[2] M.M. Doustdar1, M. Mardani, F. Ghadak, Numerical Simulation of Radiance Effects on the Aerodynamic Heating of Ablative Nose with VSL-VBLS Method, Journal of Solid and Fluid Mechanics, Vol.7, pp. 175-186.(In Persian)
[3] S. Noori, M. Ebrahimi, An Approximate Engineering Method for Aerodynamic Heating Solution around Blunt Body Nose, World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering. Vol. 6, No. 10, 2012, pp. 2221-2225.
[4] K. Miyaji, K. Fujii, Numerical analysis of three-dimensional shock/shock interactions and the aerodynamic heating, Paper presented at 37th Aerospace Sciences Meeting and Exhibit, Reno, United States, 1999
[5] H. Parhizkar, S. Karimian, Application of axisymmetric analog to unstructured grid for aeroheating prediction of hypersonic vehicles, International Journal of Numerical Methods for Heat & Fluid Flow, 2009, Vol. 19 No. 3/4, pp. 501-520.
[6] A.A. Dyakonov, F.R. DeJarnette, Streamlines and aerodynamic heating for unstructured grids on high speed vehicles, AIAA paper 2003-151, 2003
[7] C.J. ­Riley, F.R. DeJarnette, Engineering aerodynamic heating method for hypersonic flow, Journal of Spacecraft and Rockets, Vol. 29, No 3, 1992, pp. 327-234.
[8]A.Y. Sajjadi, M. Hoseinalipour, The Simulation Of Transient Temperature Distribution Inside A Blunt Body Nose And An Internal Device Using A Fast Proposed Engineering Method In Supersonic And Hypersonic Flow Regimes, Proceedings of the 3rd BSME-ASME International Conference on Thermal Engineering, Dhaka, Bangladesh, 2006
[9]  F. Hamid, R. M. Payam, M. Shahryari, S. Madani, Investigation & simulation of Nanoparticle application in satellite equipment cooling; simultaneous use of Nano fluid and a heat pipe with three evaporators, Aerospace Knowledge and technology journal, Vol.6, pp.41-56.(In Persian)
[10] R. D. Quinn, L. Gong, Real-Time Aero dynamic Heating and Sur face Temperature Calculations for Hypersonic Flight Simulation, Report NASA Technical Memorandum 4222, Ames Research center, Dryden Flight Research Facility, Ed wards, Cal, USA, 1990
[11] J.P. Shimshi, G.D. Walberg, Aerodynamic Heating to Spherically Blunted Cones at Angle of Attack, JOURNAL OF SPACECRAFT AND ROCKETS. Vol. 32, No. 3, 1995, pp 559-560
[12] J.P. Shimshi, G.D. Walberg,  An Investigation of Aerodynamic Heating to Spherically Blunted Cones at Angle of Attack, AIAA Paper 93-2764, July 1993.
[13] R.C. Mehta, Heat transfer study of high speed flow over a spiked blunt body, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 10 No. 7, 2000, pp. 750-769.
[14] E.R. Van Driest, On the Aerodynamic Heating of Blunt Bodies, Journal of Applied Mathematics and Physics (ZAMP), 1958, pp. 233-248
[15] S. Abdolahi, F. Etemadi, M, Ebrahimi, Aerodynamic heating prediction of flyinig body using fluid-solid conjugate heat transfer, J. of space science and technology, Vol. 8, pp. 41-53.(In Persian)
[16] W.B. Sturek, H.A. Dwyer, E.N. Ferry,  Prediction of In-Bore and Aerodynamic Heating of KE Projectile Fins, BRL-MR-3852, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, August 1990. (AD 226402)
[17] W.B. Sturek, L.D. Kayser, D.C. Mylin, H. Hudgins, Computational Modeling of Aerodynamic Heating for XM797 Nose Cap Configurations, ARBRL-TR-02523, U.S. Army Ballistic Research Laboratory/AARADCOM, Aberdeen P Roving Ground, Maryland, September 1983. (AD A133684)
[18] W.B. Sturek, L.D. Kayser, P. Weinacht Computational Study of Swept-Fin Aerodynamic Heating for the 105mm M774, ARBRL-MR-03315, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, October 1983. (AD A134992)
[19]M.J. Nusca, Supersonic/Hypersonic Aerodynamics and Heat Transfer for Projectile Design Using Viscous-Inviscid Interaction, BRL-TR-3119, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, June 1990. (AD A224354)
[20]Z. Yuxiang, X. Jinbiao, X. Fuhou, L. Huacheng, Research on Influence of Aerodynamic force on the Aerodynamic heat for the Hypersonic Vehicle, Applied Mechanics and Materials. ISSN: 1662-7482, 2012, Vols. 198-199, pp 207-211
[21]T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, Journal of Fluid Mechanics, 1976, Vol. 74, part 4, pp. 695-719
[22] A.J. Sher, A. Abdul, S. Ahmed, CFD Simulation with Analytical and Theoretical Validation of Different Flow Parameters for the Wedge at Supersonic Mach Number, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, March 2019, Vol. 19, No. 01, pp. 170-177.