بررسی تاثیر نوسان بر ضرایب آیرودینامیکی ایرفویل با آلگوریتم دقیق عددی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

چکیده

در این تحقیق ضمن معرفی کوتاه یک آلگوریتم عددی در تحلیل میدان جریان با مرز متحرک و صحت‌سنجی آن، تاثیر حرکت و نوسان ایرفویل بر ضرایب آیرودینامیکی آن بررسی می‌شود. معادلات حاکم در فضای دلخواه لاگرانژی-اولری نوشته می‌شود. آلگوریتم عددی به کار گرفته شده ضمن استفاده از روش اجزای محدود در محاسبه شارهای پخش و فشاری از روش حجم محدود در ارضای قوانین بقای حرکت و قوانین بقای هندسی روی شبکه متحرک بهره می‌برد. در این جا دو میدان جریان حول سیلندر و ایرفویل متحرک را مورد بررسی قرار می‌دهیم. حرکت سیلندر از نوع نوسانی انتقالی اما حرکت ایرفویل از نوع نوسانی دورانی است. ابتدا با بررسی صحت آلگوریتم عددی با حل میدان جریان حول سیلندر، نشان داده می‌شود که آن آلگوریتم حتی با استفاده از شبکه درشت و گام زمانی بزرگ، دقت بالایی به منظور تحلیل میدان جریان با مرز و شبکه متحرک دارد. پس از آن  میدان جریان حول ایرفویل نوسانی شبیه‌سازی می‌شود. نشان داده می‌شود که می‌توان با تغییر پارامترهای دورانی ایرفویل، در نیروی آیرودینامیکی آن تغییرات قابل توجهی‌ ایجاد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Airfoil Oscillation on Aerodynamic Coefficients with an Accurate Algorithm

نویسندگان [English]

  • Alireza Naderi 1
  • Masoud Darbandi 2
  • Mohammad Taeibi Rahni 2
چکیده [English]

In this study we introduce and validate an algorithm for simulating of flow field over moving boundaries where there are transverse cylinder and flapping airfoil. The governing equations are presented in arbitrary Lagrangian-Eulerian approach. We use finite element shape functions to approximate pressure and diffusion fluxes and finite volume to satisfy geometric and flow conservation laws. Our results show a good accuracy with large time steps and coarse meshes. The changing in oscillation parameters causes considerable effects on aerodynamic coefficients.

کلیدواژه‌ها [English]

  • Lagrangian-Eulerian Approach
  • Finite Volume Element Method
  • oscillating airfoil
  • Aerodynamic coefficients

[1] Zhang, L.P., Chang, X.H., Duan, X.P., Wang, Z.Y., and Zhang, X.P., “A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations,” Computers & Fluids Vol. 38, 2009, pp. 290-308.

[2] Andro, J.Y. and Jacquin, L., “Frequency effects on the aerodynamic mechanisms of a heaving airfoil in a forward flight configuration,” Aerospace Science and Technology, Vol. 13, 2009, pp. 71-80.

[3] Lian, Y and Shyy, W., “Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil,” AIAA Journal,  Vol. 45, 2007, pp. 1501-1513.

[4] Smith, M.J., “Simulating moth wing aerodynamics: towards the development of flapping-wing technology,” AIAA Journal, 1996, pp. 1448-1457.

[5] Zhao, Y. and Forhad, A., “A general method for simulation of fluid flows with moving and compliant boundaries on unstructured grids” Computer Methods in Applied Mechanics and Engineering, Vol. 192, 2003, pp. 4439-4466.

[6] Demirdzic, I. and Peric, M., “Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries” Int. J. for Numerical Methods in Fluids, Vol. 10, 1990, pp. 771-790.

[7] Zwart, P.J., Raithby, G.D., and Raw, M.J., “The integrated space-time finite-volume method and its application to moving boundary problems”, J. Computational Physics, Vol. 154, 1999, pp. 497-519.

[8] Guilmineau, E. and Queutey P., “A numerical simulation of vortex shedding from an oscillating circular cylinder”, J. Fluids and Structures, Vol. 16, 2002, pp. 773-794. 

[9] Fourestey, G. and Piperno S., “A second order time-accuracy ALE lagrange-galerkin method applied to wind engineering and control of bridge profiles”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, 2004, pp. 4117-4137.

[10] Koobus, B. and Farhat C., “Second order time-accurate and geometrically conservation implicit schemes for flow computations on unstructured dynamic meshes”, Computer Methods in Applied Mechanics and Engineering, Vol. 170, 1999, pp. 103-129.

[11] Geuzaine, P., Grandmont, C., and Farhat, C., “Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations”, J. Computational Physics, Vol. 191, 2003, pp. 206-227.

[12] Darbandi, M. and Naderi, A., “Multiblock hybrid grid finite volume method to solve flow in irregular geometries”, Computer Methods in Applied Mechanics and Engineering, Vol. 196, 2006, pp. 321-336.

[13] Yang, J. and Balaras, E., “An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries,” Journal of Computational Physics, Vol. 215, 2006, pp. 12-40.