تحلیل ارتعاشات غیرخطی پوسته استوانه‌ای دو سرگیردار ساخته شده از مواد مرکب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سازه های هوایی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

چکیده

هدف از انجام این تحقیق، استخراج و حل معادلات غیرخطی حاکم بر ارتعاشات پوسته استوانه‌ای ساخته شده از مواد مرکب لایه‌ای با لایه‌چینی متعامد، با استفاده از اصل همیلتون (Hamilton's principle) و روش گالرکین است. کرنش‌ها از نوع غیرخطی ون‌کارمن (Von karman) بوده و شرایط مرزی دو سر گیردار، فرض شده است. بسط مودال پاسخ، به‌صورت مجموع چند مود در نظر گرفته شده است که با جایگذاری مستقیم این بسط در معادله غیرخطی حاکم بر مبنای کرنش‌های ون‌کارمن، و با استفاده از روش گالرکین، معادلات غیرخطی حاکم بر مختصات تعمیم‌یافته‌ی هریک از مود‌ها استخراج می‌شود. معادلات حاکم به‌دست آمده با استفاده از روش رانگ-کوتا مرتبه چهار حل می‌شود. با استفاده از روش حل ارائه شده، پاسخ ارتعاشی پوسته تحت بار دینامیکی مشخص، تحلیل شده و اثر پارامتر‌ی‌هایی چون نوع لایه‌چینی، تعداد موج‌ها و هندسه بر ارتعاشات پوسته مورد مطالعه قرار می‌گیرد. فرکانس‌های بدست آمده از روش حل ارائه شده در این تحقیق، با نتایج حاصل از نرم‌افزار اجزای محدود و نتایج دیگر محققین مقایسه و مطابقت داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear Vibration Analysis Of Clamped-Clamped Composite Cylindrical Shells

نویسندگان [English]

  • Ayoob Entezari 1
  • Rooholah Dehghani Firoozabadi 2
  • Mohammad Ali Koochakzadeh 2
چکیده [English]

Nonlinear vibration analysis of cross-ply laminated composite shallow circular cylindrical shell was performed. This study applies the Hamilton's principle and Galerkin's method to establish the governing equations of motion and obtain the spatial mode shapes. The geometric non-linear strains are of the von Karman type, boundary condition is clamped-clamped and the shell is subjected to radial dynamic excitation. The modal expansion, considered as a summation of modes, is directly substituted into the non-linear equation of motion for the shell based on the von Karman non-linear strain, and the Galerkin’s method is applied to obtain the governing non-linear equations of motion in generalized coordinates. The resulting ordinary differential equations are solved by the Runge-Kutta method. Using the presented model, the effects of lamination sequence and material properties on the vibration characteristics of the shell are studied and some conclusions are drawn. The results are compared with previous studies and finite element analysis.

کلیدواژه‌ها [English]

  • Compositeshell
  • Vibration
  • Modalmethod
  • Non-Linearequation
  • Galerkin’s method

[1] Matsuzaki Y., and Kobayashi S., A Theoretical and Experimental Study of the Nonlinear Flexural Vibration of Thin Circular Cylindrical Shells with Clamped Ends. Transactions of the Japan Society for Aeronautical and Space Sciences, v. 12, 1969, pp. 55–62.

[2] Chia C. Y., Non-Linear Free Vibration and Post buckling of Symmetrically Laminated Orthotropic Imperfect Shallow Cylindrical Panels with Two Adjacent Edges Simply Supported and the Other Edges Clamped. International Journal of Solids and Structures, v. 23, 1987, pp. 1123–1132.

[3] Iu V. P., and Chia C. Y., Non-Linear Vibration and Post buckling of Unsymmetric Cross-Ply Circular Cylindrical Shells. International Journal of Solid Structures, v. 24, 1988, pp. 195–210.

[4] Chiba M., Experimental Studies on a Nonlinear Hydroelastic Vibration of a Clamped Cylindrical Tank Partially Filled with Liquid. Journal of Pressure Vessel Technology, v. 115, 1993, pp. 381–388.

[5] Abe A., Kobayashi Y., and Yamada G., Non-linear Vibration Characteristics of Clamped Laminated Shallow Shell. Journal of Sound and vibration, v. 234, n. 3, 2000, pp. 405-426.

[6] Amabili M., Nonlinear Vibrations of Circular Cylindrical Shells with Different Boundary Conditions. AIAA Journal, v. 41, n. 6, June 2003.

[7] Karagiozisa K.N., Amabili M., Padoussisa M.P., and Misra A.K., Nonlinear vibrations of fluid-filled clamped circular cylindrical shells. Journal of Fluids and Structures, v. 21, 2005, pp. 579–595.

[8] Pellicano F., Linear and Nonlinear Vibrations of Shells. 2nd International Conference on Nonlinear Normal Modes and Localization in Vibrating Systems, Samos, June 19-23 2006.

[9] Shao Z.S., and Ma G.W., Series Expansion Method Free Vibration Analysis of Laminated Cylindrical Shells by Using Fourier. Journal of Thermoplastic Composite Materials, v. 20, n. 551, 2007.

[10] Qatu M. S., Vibration of Laminated Shells and Plates. Elsevier Academic Press, Oxford, 2004.

[11] Amabili M., Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Italy, 2008.

[12] Brush D. O., and Almroth B. O., Buckling of Bars, Plates, and Shells. McGraw-Hill, Scarborough, CA, 1975.

[13] Hyer M. W., Stress Analysis of Fiber-Reinforced Composite Materials., McGraw-Hill, New York, 1998.

[14] Soedel W., Vibrations of Shells and Plates. Second Edition, Marcel Dekker, New York, 1993.

[15] Hirano Y., Nonlinear Vibrations of Composite Material Shells. Ph.D. thesis, University of Delaware, 1988

[16] Rao S., Vibration of Continuous Systems. John Wiley & Sons, New Jersey, 2007.