تحلیل المان محدود ارتعاشات آزاد ورق دایره‌ای متخلخل مدرج تابعی تقویت‌شده با گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک / دانشگاه صنعتی شاهرود، سمنان، ایران

2 عضو هیات علمی / دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، سمنان، ایران

3 عضو هیات علمی / گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

چکیده

در این مقاله، تحلیل المان محدود ارتعاشات آزاد صفحه دایره‌ای متخلخل مدرج تابعی تقویت شده با گرافن بر اساس تئوری تغییر شکل برشی مرتبه اول (FSDT) برای اولین بار ارائه شده است. معادلات حاکم با استفاده از اصل همیلتون به دست می‌آید و روش المان محدود (FEM) برای حل معادلات حاکم بر ورق استفاده شده است. نتایج کار حاضر با مطالعات قبلی مقایسه شده و تطابق خوبی بین نتایج مشاهده شد. تأثیر پارامترهای مختلف مانند توزیع تخلخل، ضریب تخلخل، الگوهای مختلف GPL و درصد وزنی نانو ذرات گرافن، انواع شرایط مرزی و همچنین نسبت ضخامت به شعاع بر روی ارتعاشات ورق دایره‌ای بررسی شد. در ادامه ضمن صحت سنجی روش تحلیل، نتایج حاصل از حل عددی، مورد مقایسه و بررسی قرار گرفت . در نتایج مشخص گردید که اثر درصد وزنی گرافن و نوع الگوهای مختلف گرافن و همچنین شرایط تکیه گاهی در ارتعاشات ورق بیش از سایر موارد است.

کلیدواژه‌ها


عنوان مقاله [English]

Finite element analysis of free vibration of functionally graded porous circular plate reinforced with graphene

نویسندگان [English]

  • Mojtaba Khatounabadi 1
  • Mohammad Jafari 2
  • Kamran Asemi 3
1 PhD Mechanical Engineering student, Shahrood University of Technology, Semnan, Iran
2 Associate Professor, Faculty of Mechanical and Mechatronic Engineering, Shahrood University of Technology, Semnan, Iran
3 Assistant Professor, Department of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran
چکیده [English]

In this paper, the finite element analysis of the free vibrations of functionally graded porous circular plate reinforced with graphene based on the first order shear deformation theory (FSDT) is presented for the first time. The governing equations are obtained using Hamilton's principle and the finite element method (FEM) is used to solve the governing equations of the sheet. The results of the present work were compared with previous studies and a good agreement between the results was observed. The effect of different parameters such as porosity distribution, porosity coefficient, different GPL patterns and weight percentage of graphene nanoparticles, types of boundary conditions and also the ratio of thickness to radius on the vibrations of the circular sheet was investigated. Next, while validating the analysis method, the results obtained from the numerical solution were compared and analyzed. In the results, it was found that the effect of weight percentage of graphene and different types of graphene patterns as well as support conditions in sheet vibrations is more than other cases.

کلیدواژه‌ها [English]

  • free vibrations analysis
  • functionally graded porous materials
  • circular plate
  • reinforced with graphene
  • first order shear deformation theory, finite element method
[1] Smith, B., et al., Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 2012. 71: pp. 1-10.
[2] Biratu, A.A. and D.K. Asmamaw, Farmers’ perception of soil erosion and participation in soil and water conservation activities in the Gusha Temela watershed, Arsi, Ethiopia. International Journal of River Basin Management, 2016. 14(3): pp. 329-336.
[3] Lefebvre, L.P., J. Banhart, and D.C. Dunand, Porous metals and metallic foams: current status and recent developments. Advanced engineering materials, 2008. 10(9): pp. 775-787.
[4] Xia, X., et al., Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys, 2013. 1(4): pp. 330-335.
[5] Mittal, G., et al., A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 2015. 21: pp. 11-25.
[6] Rafiee, M.A., et al., Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano, 2009. 3(12): pp. 3884-3890.
[7] Chen, D., J. Yang, and S. Kitipornchai, Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology, 2017. 142: pp. 235-245.
[8] Zhang, Y.Y., et al., On snap-buckling of FG-CNTR curved nanobeams considering surface effects. Steel Compos. Struct, 2021. 38(3): pp. 293-304.
[9] Lu, L., G.-L. She, and X. Guo, Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection. International Journal of Mechanical Sciences, 2021. 199: pp. 106428.
[10] Huang, Y., et al., Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archives of Civil and Mechanical Engineering, 2021. 21(4): pp. 1-15.
[11] Zerrouki, R., et al., Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Structural Engineering and Mechanics, An Int'l Journal, 2021. 78(2): pp. 117-124.
[12] Salgarello, M., G. Visconti, and L. Barone-Adesi, Interlocking circumareolar suture with undyed polyamide thread: a personal experience. Aesthetic plastic surgery, 2013. 37(5): pp. 1061-1062.
[13] Heidari, F., et al., On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel and Composite Structures, An International Journal, 2021. 38(5): pp. 533-545.
[14] Bendenia, N., et al., Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Computers and Concrete, An International Journal, 2020. 26(3): pp. 213-226.
[15] Al-Furjan, M.S.H., et al., A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Engineering with Computers, 2020: pp. 1-18.
[16] Al-Furjan, M., et al., Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM. Engineering with Computers, 2020: pp. 1-24.
[17] Al-Furjan, M., et al., Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Engineering with Computers, 2020: pp. 1-17.
[18] Kiarasi, F., et al., Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading. Journal of Computational Applied Mechanics, 2022. 53(1): pp. 1-23.
[19] She, G.-L., H.-B. Liu, and B. Karami, Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Structures, 2021. 160: pp. 107-407.
[20] Zhai, Q., et al., Estimation of wetting hydraulic conductivity function for unsaturated sandy soil. Engineering Geology, 2021. 285: pp. 106-134.
[21] Asgari, G.R., et al., Dynamic instability of sandwich beams made of isotropic core and functionally graded graphene platelets-reinforced composite face sheets. International Journal of Structural Stability and Dynamics, 2022: pp. 225-292.
[22] Al-Furjan, M., et al., On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Composite Structures, 2021. 257: pp. 113-150.
[23] Al-Furjan, M., et al., Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Engineering Structures, 2021. 228: pp. 111-496.
[24] Zhou, C., P. Wang, and W. Li, Fabrication of functionally graded porous polymer via supercritical CO2 foaming. Composites Part B: Engineering, 2011. 42(2): pp. 318-325.
[25] García-Moreno, F., Commercial applications of metal foams: Their properties and production. Materials, 2016. 9(2): pp. 85.
[26] Miyamoto, Y., et al., Processing and fabrication, in Functionally Graded Materials. 1999, Springer. pp. 161-245.
[27] Slater, A.G. and A.I. Cooper, Function-led design of new porous materials. Science, 2015. 348(6238): pp. 75-80.
[28] She, G.-L., Guided wave propagation of porous functionally graded plates: The effect of thermal loadings. Journal of Thermal Stresses, 2021. 4: pp. 1289-1305.
[29] Yamanouchi, M., et al. FGM-90. in Proceedings of the First International Symposium on Functionally Gradient Materilas, FGM Forum, Tokyo, Japan. 1990.
[30] Saleh, B., et al., 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges. Composites Part B: Engineering, 2020. 201: pp. 108-376.
[31] Tahir, S.I., et al., An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation. Waves in Random and Complex Media, 2021: pp. 1-24.
[32] Tahir, S.I., et al., Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Composite Structures, 2021. 269: pp. 114-130.
[33] Kumar, Y., A. Gupta, and A. Tounsi, Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Advances in nano research, 2021. 11(1): pp. 1-17.
[34] Bellifa, H., et al., Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Structures and Systems, 2021. 27(4): pp. 719-728.
[35] Guellil, M., et al., Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation. Steel and Composite Structures, 2021. 38(1): pp. 1-15.
[36] Bekkaye, T.H.L., et al., Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Computers and Concrete, An International Journal, 2020. 26(5): pp. 439-450.
[37] Liu, J., H. Yan, and K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceramics International, 2013 .39(6): pp. 6215-6221.
[38] Kvetková, L., et al., Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012. 66(10): pp. 793-796.
[39] Barati, M.R. and A.M. Zenkour, Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Composite Structures, 2017. 181: pp. 194-202.
[40] Barati, M.R. and A.M. Zenkour, Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mechanics of Advanced Materials and Structures, 2019. 26(18): pp. 1580-1588.
[41] Yang, J., D. Chen, and S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures, 2018. 193: pp. 281-294.
[42] Kitipornchai, S., D. Chen, and J. Yang, Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design, 2017. 116: pp. 656-665.
[43] Gao, K., et al., Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Composite Structures, 2018. 204: pp. 831-846.
[44] Shahgholian-Ghahfarokhi, D., et al., Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mechanics Based Design of Structures and Machines, 2021. 49(7): pp. 1059-1079.
[45] Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi, Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines, 2021. (1)49: pp. 81-102.
[46] Ebrahimi, F. and A. Rastgo, An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin-Walled Structures, 2008. 46(12): pp. 1402-1408.
[47] Allahverdizadeh, A., M. Naei, and M.N. Bahrami, Nonlinear free and forced vibration analysis of thin circular functionally graded plates. Journal of sound and vibration, 2008. 310(4-5): pp. 966-984.
[48] Wirowski, A. Free vibrations of thin annular plates made from functionally graded material. in PAMM: Proceedings in Applied Mathematics and Mechanics. 2009. Wiley Online Library.
[49] Tariq, M., et al., Effect of hybrid reinforcement on the performance of filament wound hollow shaft. Composite Structures, 2018. 184: pp. 378-387.
[50] Ferreira, A.J., et al., Analysis of functionally graded plates by a robust meshless method. Mechanics of Advanced Materials and Structures, 2007. 14(8): pp. 577-587.
[51] Ferreira, A., et al., Natural frequencies of functionally graded plates by a meshless method. Composite Structures, 2006. 75(1-4): pp. 593-600.
[52] Zheng, J., X. Yang, and S. Long, Topology optimization with geometrically non-linear based on the element free Galerkin method. International Journal of Mechanics and Materials in Design, 2015. 11(3): pp. 231-241.
[53] Shariyat, M. and M. Alipour, Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations. Archive of Applied Mechanics, 2011. 81(9): pp. 1289-1306.
[54] Li, S.-R., X. Wang, and R.C. Batra, Correspondence relations between deflection, buckling load, and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates. Journal of Applied Mechanics, 2015. 82:(11) pp. 106-111.
[55] Lal, R. and N. Ahlawat, Buckling and vibration of functionally graded non-uniform circular plates resting on Winkler foundation. Latin American Journal of Solids and Structures, 2015. 12: pp. 2231-2258.
[56] Swaminathan, K., et al., Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Composite Structures, 2015. 120: pp. 10-31.
[57] Arefi, M., The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers. Smart Structures and Systems, 2015. 15(5): pp. 1345-1362.
[58] Arshid, E., et al., Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019. 233(16): pp. 5659-5675.
[59] Singh, PP. and M.S. Azam, Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021. 235(5): pp. 1046-1065.
[60] Czarnocki, P. and T. Zagrajek, Sequence of damage events occurring in the course of low energy impact. Archives of Civil and Mechanical Engineering, 2016. 16: pp. 825-834.
[61] Ashby, M.F., et al., Metal foams: a design guide. 2000: Elsevier.
[62] Kiarasi, F., et al., A review on functionally graded porous structures reinforced by graphene platelets. Journal of Computational Applied Mechanics, 2021. 52(4): pp. 731-750.
[63] Khatounabadi, M., M. Jafari, and K. Asemi, Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets. Waves in Random and Complex Media, 2022: pp. 1-27.
[64] Kiarasi, F., et al., Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Advances in nano research, 2021. 11(4): pp. 361-380.
[65] Shen, H.-S., F. Lin, and Y. Xiang, Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dynamics, 2017. 90(2): pp. 899-914.
[66] Babaei, M. and K. Asemi, Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation. SN Applied Sciences, 2020. 2(10): pp. 1-21.
[67] Asemi, K., M. Babaei, and F. Kiarasi, Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets. Mechanics Based Design of Structures and Machines, 2020: pp. 1-29.
[68] Shariyat, M. and K. Asemi, Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations. Composites Part B: Engineering, 2014. 56: pp. 934-947.
[69] Zhou, Z., et al., Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of Sound and Vibration, 2011. 330(5): pp. 1005-1017.