مدل‌سازی عددی نحوۀ توزیع هوا در سیستم تهویه مطبوع یک هواپیمای سرنشین‌دار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

2 کارشناس ارشد / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

در این پژوهش عملکرد سیستم توزیع هوا در کابین یک هواپیمای مسافربری 42 نفره تک‌راهرو که مسافران در دو ردیف سه نفره نشسته‌اند، تحلیل شده است. برای بررسی توزیع هوا در کابین از روش دینامیک سیالات محاسباتی استفاده شده است. در این تحلیل عددی اثر تغییر رطوبت نسبی در داخل کابین، تغییر سرعت ورودی هوا به داخل کابین و تغییر نحوۀ توزیع هوای درون کابین بررسی شده است. برای تعیین آسایش حرارتی در کابین، دو پارامتر میانگین آرای پیش‌بینی‌شده و درصد نارضایتی پیش‌بینی‌شده بررسی شده است. نتایج نشان می­دهد که در اثر افزایش رطوبت نسبی از 0 تا 10 درصد، تغییرات فشار استاتیکی بر آسایش بدن مسافران تغییر عمده‌ای را ایجاد نمی­کند. بررسی نتایج نشان می­دهد که در سرعت 1 متر بر ثانیه برای هوای ورودی به داخل کابین، به‌خاطر گردش بهتر هوا در ناحیه سر و بقیه‌ اندام‌ها مسافران احساس آسایش حرارتی بیشتری داشته و تغییرات فشار استاتیکی کمتری روی سر و بدن خود احساس می‌کنند. درنهایت با تغییر نحوۀ توزیع هوا از سیستم اختلاطی به سیستم جا‌به‌جایی، مشاهده شد که سیستم توزیع هوای اختلاطی ازنظر آسایش حرارتی برای مسافران بهتر بوده اما ازنظر فشار استاتیکی در ناحیۀ سر و بدن مسافران، سیستم توزیع هوای جابه‌جایی بهتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical modeling of air distribution in the air conditioning system of a passenger plane

نویسندگان [English]

  • Jamasb Pirkandi 1
  • Mohammad Sadegh Abdolahpoor 2
  • Hamid Parhizkar 1
  • Mostafa Mahmoodi 1
1 Faculty of Aerospace, Malek Ashtar University of Technology, Iran.
2 Faculty of Aerospace, Malek Ashtar University of Technology, Iran.
چکیده [English]

In this study, the performance of the air distribution system in the cabin of a single-aisle passenger plane with 42 passengers seated in two rows of three has been analyzed. Computational fluid dynamics method has been used to investigate the air distribution in the cabin. In this numerical analysis, the effect of changing the relative humidity inside the cabin, changing the speed of air entering the cabin and changing the way of air distribution inside the cabin has been investigated. In order to determine the thermal comfort in the cabin, two parameters including the average number of predicted votes and the percentage of predicted dissatisfaction have been investigated. The results show that with the increase of relative humidity from 0 to 10%, changes in static pressure do not cause major changes in passenger comfort. Also, at a speed of 1 m/s for air entering the cabin, due to better air circulation in the head and other organs, the passengers feel more thermal comfort and less static pressure changes on their head and body. Finally, by changing the air distribution system from the mixing system to the displacement system, it was observed that the mixing air distribution system is better in terms of thermal comfort for passengers. However, in terms of static pressure in the head and body area of passengers, the displacement air distribution system is better.

کلیدواژه‌ها [English]

  • air conditioning
  • air distribution
  • cabin
  • passenger aircraft
  • thermal comfort
[1] R.H. Howell, Principles of Heating Ventilating and Air Conditioning, ASHRAE Handbook—Fundamentals, 8th Edition, 2017.
[2] Ashrae handbook, Fundamentals, 2021.
[3] R. de Dear, G.S. Brager, Developing an Adaptive Model of Thermal Comfort and Preference, ASHRAE Transactions, Vol. 104 (part 1), 1998.
[4]. P.O. Fanger, Thermal Comfort: Analysis and applications in environmental engineering, McGraw-Hil, 1970.
[5] J. Bosbach, J. Pennecot, C. Wagner, M. Raffel, T.H. Lerche and S.T. Repp, Experimental and Numerical Simulations of Turbulent Ventilation in Aircraft Cabins, Energy, Vol. 31. No. 5, pp. 694-705, 2006.
[6]. A. Wang, Y. Zhang, Y Sun and  X. Wang, Experimental study of ventilation effectiveness and air velocity distribution in an aircraft cabin mockup, Building and Environment, Vol. 43, pp. 337-343, 2008.
[7]. T. Zhang, Q. Chen Novel, Air distribution systems for commercial aircraft cabins, Building and Environment, Vol. 42, pp. 1675-1684, 2007.
[8]. Z. Zhang, X. Chen, S, Mazumdar, T. Zhang and  Q. Chen, Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup, Building and Environment, Vol 44, No. 1, pp. 85-94, 2009.
[9]. T‌. Zhang, S.Y. Yin and Sh. Wang, An under-aisle air distribution system facilitating humidification of commercial aircraft cabins, Building and Environment, Vol 45, No. 4, pp. 907-915, 2010.
[10]. P. Roytta, Study of a vapor-compression air-conditioning system for jetliners, PhD Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2009.
[11] X. Chen and Q. Chen, Comparison of different decontaminant delivery methods for sterilizing unoccupied commercial airliner cabins, Building and Environment, Vol. 45, No. 9, pp. 2027-2034, 2010.
[12]. T. Zhang, P. Li and S. Wang, A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes, Building and Environment, Vol. 47, pp. 89-99, 2012.
[13]. W. Liu, J. Wen, J. Chao, W. Yin, Ch. Shen, D. Lai, Ch.H. Lin, J. Liu, H. Sun and Q. Chen, Accurate and high-resolution boundary conditions and flow fields in the firstclass cabin of an MD-82 commercial airliner, Atmospheric Environment, Vol. 56, pp. 33-44, 2012.
[14]. B. Xu and Y. Zhu, Investigation on lowering commuters in-cabin exposure to ultrafine particles, Transportation Research Part D Transport and Environment, Vol. 18, No. 1, pp. 122-130, 2013.
[15] C. Chen, W. Liu, F. Li, Ch.H. Lin, J.Liu, J. Pei and Q. Chen, A hybrid model for investigating transient particle transport in enclosed environments, Building and Environment, Vol. 62, pp. 45-54, 2013.
[16]. M. R. Afghari1, M. Abolhasani Moghadam and A. Ziaie, Design and experimental analysis of aircraft air distribution system, Journal of Mechanical Research and Application, Vol. 4, No. 3, pp. 19-27, 2012.
[17]. X. Cao, J. Liu, J. Pei, Y. Zhang, J. Li and X. Zhu, 2D-PIV Measurement of aircraft cabin air distribution with a high spatial resolution, Building and Environment, Vol. 82, pp. 9-19, 2014.
[18]. T. Zhang and X. Yi You, A simulation-based inverse design of preset aircraft cabin environment, Building and Environment, Vol. 82, pp. 20-26, 2014.
[19] X. Cao, J. Li, J. Liu, and W. Yang, 2D-PIV measurement of isothermal air jets from a multi-slot diffuser in aircraft cabin environment, Building and Environment, Vol. 99, pp. 44-58, 2016.
[20] R.You, J. Chen, Ch. H. Lin, D. Wei and Q. Chen, Investigating the impact of gaspers on cabin air quality in commercial airliners with a hybrid turbulence model, Building and Environment, Vol. 111, pp. 110-122, 2017.
[21] F. Li, J. Liu, J. Ren, X. Cao and Y. Zhu, Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin, International Journal of Heat and Mass Transfer, Vol. 96, pp. 287–295, 2016.
[22] H. Jiang, S. Dong, H. Zhang and J. Wang, Optimization on conventional and electric air-cycle refrigeration systems of aircraft: A short-cut method and analysis, Chinese Journal of Aeronautics, Vol 33, No. 7, 2020.
[23] H. Yang, Ch. Yang, X. Zhang and X. Yuan, Influences of Different Architectures on the Thermodynamic Performance and Network Structure of Aircraft Environmental control System, Entropy, Vol. 23, No. 7, 2021. 
[24] D. Zhongdi, S. Haoran, W. Chengyun and H. Haitao, Flow- network based dynamic modelling and simulation of the temperature control system for commercial aircraft with multiple temperature zones, Energy, Vol. 238, 2021.
[25] A. Tohidi and H. ghafari, Ansys Fluent comprehensive guide (introductory), Dibagaran Tehran, Tehran, 2013.
[26] National Standard 14384, determination of PMV and PPD thermal comfort indices and local thermal comfort criteria, First edition, 1384.
[27] J Pirkandi, M Ommian, Thermo-Economic Operation Analysis of SOFC–GT Combined Hybrid System for Application in Power Generation Systems, Journal of Electrochemical Energy Conversion and Storage, Vol. 16 (1), 2019.