Impact of the Geometrical Parameters of Valve less Pulse jet Engine on the Thrust

Document Type : Research Paper

Authors

Abstract

Simple designing, low maintenance and build cost, and high ratio of thrust to weight, also new methods of numerical simulating and solution causes to develop the Pulse Jet engine usage in non-military fields. Impact of geometrical parameters of valve less pulse jet engine on thrust has been studied in this article. First, study concentrate on main geometrical parameters like diameter and length, and transform those parameters to dimension less parameters (length to mean diameter ratio) for each section of the engine. Then the allowable range for parameters is achieved based upon experimental researches of Lockwood. Ten new geometries for valve less pulse jet engine has been defined and numerical solution of two-dimension flow field of inside engine has been presented with Fluent Code. New method has been presented (without solving the combustion) with considering combustion as initial condition. To ensure that the accuracy of solution is obtained, validation has been done with a valve pulse jet engine that shows excellent results with less than 5 percent error. Eventually the main result shows that amount of parameters that has most impact on thrust is 29 for exhaust pipe, 1.25 for combustion chamber and 3.5 for intake pipe. The volume of combustion chamber should not exceed the limits otherwise it will be caused non-uniform pressure distribution and will be effect on engine performance.

Keywords

Main Subjects


[1] Ordon, R. L. 2006. Experimental Investigation into the Operational Parameters of a 50 Centimeter Class Pulse Jet Engine, M.Sc. dissertation North Carolina State University.
[2] Ogorelec. Bruno. 2005. A Historical Review of Vlalveless Pulse Jet Designs. Zegreb.
[3] Schoen, M. S. 2005. Experimental Investigation in 15 centimeter Pulse Jet Engine.North Carolina State University.
[4] علیرضا مستوفی­زاده، مهرداد بزاز ­زاده و حامد گلچین. 1386. بررسی اثرات به­کارگیری پیکربندی­های مختلف ایجکتور بر افزایش رانش پالس­جت سوپاپ دار کوچک، ارائه شده در هفتمین همایش سالانه انجمن هوافضای ایران، دانشگاه صنعتی شریف.
[5] Lockwood, R. M. 1970. Thrust Augmented Intermittent Jet Lift Propulsion System. United States Patent Office Journal.
[6] Sayres, J. S. 2011. Computational Fluid Dynamics for Pulsejets and Pulsejet Related Technologies. M.Sc. Thesis. North Carolina State University.
[7] California Institute of Technology. 1946. Jet Propulsion.
[8] محمد حسن قربانی، مجتبی احمدی، 2011. افزایش راندمانتوربین گازی با بهره­گیری از روشی نو در استفاده از پالس جت، سومین کنفرانس نیروگاه­های حرارتی.
[9] Greatrix, D. R. 2012. Powered Flight. 1st. Edition, Ryerson University of Toronto.
[10] Westberg, F. 2000. Inside the Pulse Jet Engine.
[11] Kerr, C., and Reynolds J. 2010. Valve less Pulse Jet Engine. M.Sc. dissertation California Polytechnic State University.
[12] Lockwood, R. M. 1969. Pulse Jet Engine, United States Patent Office Journal.
[13] Bruce. Simpson. 2005. The Enthusias’s Guide to Pulse Jet Engines. Third revision
[14] Cottrill, L. 2008. A Primitive Valveless PulseJet Design Method for Simple Engines with Rear Facing Intakes.
[15] Richardson, J. S. 1984. Observation on the Design and Operation of Pulsejet Engines as Derived from an Experimental and Theoretical Investigation. University of Belfast.
[16] Grunow, F. S. 1947. Gas Dynamic Investigation of The Pulse Jet Tube.
[17] Anderson. D. A. 1984. Computational Fluid Mechanics and Heat Transfer. 2nd Edition.
[18] Institute for Mathematics and Mechanics. 1946. A Gas Dynamical Formulation for Waves and Combustion in Pulse Jets.
[19] Fluent Publish Team. 2006. User Guide of Fluent 6.0. Fluent Inc. Lebanon.
[20] Department of Aeronautical Engineering. 1954. A Gas Dynamics of Combustion. New York University.
[21] Seitzman, J. M. 2001. Shock Waves. Georgia Tech University.
[22] Lamnaouer, M. 2010. Numerical Modeling of the Shock Tube Flow Fields Before and During Ignition Delay Time Experiments at Practical Conditions. B.Sc. Thesis. University of Central Florida.
[23] فتح الله امی، سید مصطفی حسینعلی پور، فواد ظهوری و مجید سروش. 1386. بررسی احتراق در موتور پالس جت. پوستر ارئه شده در هفتمین همایش سالانه انجمن هوا فضای ایران، تهران.
[24] Geng,T., Paxon, D. E., Zheng, F., Kuznetsov, A., Roberts, W. L., Kerr, Reynolds, J., Comparison Between Numerically Simulated and Experimentally Measured Flowfi eld Quantities Behind a Pulsejet. 2008. National Aeronautics and Space Administration (NASA), Ohio.
[25] Arjomandi, M., Coombes, J., Hollands, M., Jones, S., Matthewson, S., Smith, R. 2007. Design and Build a Pulse Jet Engine and Thrust Measurment Stand. University of Adelaide.
[26] Bartosh, B. J. 2007. Thrust Measurment of a Split-Path Valveless Pulse Detonation Engine. M.Sc. Thesis. California Polytechnic State University.
[27] Carpenter, P. J. 1956. Investigation of the Propulsive Characteristic of a Helicopter Type Pulse Jet Engine Over Range of Mach Numbers and Angle of Yaw. Washington.
[28] Geng, T. 2007. Numerical Simulations of Pulsejet Engines. Phd. Dissertation. Raleigh University.
[29] حسین رجبی کوکنده، کریم مظاهری، 1389. طراحی، ساخت و تست موتور پالس جت خطی، پایان­نامه کارشناسی ارشد، دانشگاه صنعتی شریف.
[30] Shekar, R. D., Rajanna, D. 2011. Numerical Simulation and Validation of Inviscid Transient Flow in Shock Tube. 14th Seminar MTech.