تخمین مودهای پروازی هواپیما با استفاده از انتقال هیلبرت - هوانگ

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموختة دکتری هوافضا / دانشکدة مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

2 عضو هیات علمی / دانشکدة مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله نحوة استفاده از انتقال هیلبرت - هوانگ برای شناسایی مودهای پروازی و کسب مشخصات آنها بررسی شده است. برای این منظور نشان داده می‎شود که انتقال هیلبرت - هوانگ توانایی‌های بالقوه‌ای برای بهبود تحلیل‌های کیفیت پروازی هواپیما و رفع برخی از ضعف‌های روش کلاسیک را دارد. برای بهره‌مندی از این توانمندی‌ها، بهبودهایی چون اعمال برخط الگوریتم تجزیة مودهای شبه‌تجربی ارائه شده است. سپس به ارائة روش جدیدی برای تخمین مودهای پروازی و مشخصات آنها براساس الگوریتم برخط و محلی تجزیة موهای شبه‌تجربی و انتقال هیلبرت پرداخته شده است. روش پیشنهادی قادر است در هنگام اجرای آزمایش‌های پروازی به‌صورت زمان - حقیقی برخی از مودهای دینامیکی را مستقیماً از داده‌های پروازی در حوزة زمان استخراج کند. نتایج توانایی روش پیشنهادی را در استخراج مودهای دارای میرایی کم نشان می‌دهد. همچنین، تطابق با نتایج روش کلاسیک برای سیگنال‌های خروجی شبیه‌سازی‌شده از مدل خطی اغتشاشی، صحت عملکرد روش جدید را آشکار می‌سازد. در پایان، مثالی از اعمال روش جدید بر داده‌های پروازی حقیقی یک هواپیما ارائه شده است که وجود تعدادی از مودهای غیراستاندارد با میرایی اندک را در محدودة غیرخطی پرواز آشکار می‌سازد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Airplane Flight Modes with Hilbert-Huang Transform

نویسندگان [English]

  • Amin bagherzadeh 1
  • Mehdi Sabzehparvar 2
چکیده [English]

This paper investigates the use of the Hilbert-Huang transform to identify airplane flight modes and their characteristics. This study shows that the Hilbert-Huang transform, as a new powerful tool in the signal analysis field, has good potential capabilities to improve the airplane flying quality analysis and to overcome some drawbacks of the classical method in flight dynamics. To utilize these capabilities, some improvements such as online implementation of the empirical mode decomposition algorithm are presented. The new online-local algorithm can estimate the signal trend by the Savitzky-Golay filter and eliminate it from the signal in the EMD algorithm. A performance comparison of the new and traditional algorithms is also presented. Then, a new method is proposed based on the online-local EMD algorithm and Hilbert transform to determine the airplane modes and their characteristics. The new method is able to extract some airplane modes, including natural and non-standard modes, directly from measurements of flight parameters during the flight tests in the time domain. The results indicate the ability of the proposed method to extract the airplane modes with small damping ratios. Also, the consistency of the results obtained from the simulated output signals of the linear perturbed model verifies the new method performance. Finally, an example of applying the proposed method to the real flight test data is presented. It reveals the existence of some non-standard modes with small damping ratios at nonlinear flight regions and confirms the new method performance.

کلیدواژه‌ها [English]

  • Flight modes
  • Hilbert-Huang transform
  • flight test data
  • flying quality analysis
  • flight mechanics

[1] Morelli, Eugene A. “Real-time parameter estimation in the frequency domain.” Journal of Guidance, Control, and Dynamics 23 (5), 2000, pp. 812-818.

[2] Jategaonkar, Ravindra V., Dietrich Fischenberg, Wolfgang Gruenhagen. “Aerodynamic modeling and system identification from flight data-recent applications at DLR.” Journal of Aircraft 41 (4), 2004, pp. 681-691.

[3] Tischler. Mark B., Robert K. Remple. “Aircraft and rotorcraft system identification.” New York, NY: American Institute of Aeronautics and Astronautics, 2006.

[4] Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi C. Tung, Henry H. Liu. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1971), pp. 903-995.

[5] Pai, Frank P., Anthony N. Palazotto. “HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems.” International Journal of Mechanical Sciences 50 (12), 2008, pp. 1619-1635.

[6] Feldman, Michael. “Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems.” Mechanical Systems and Signal Processing 47 (1), 2012. Pp. 66-77.

[7] Jing, Hang, Haiqing Yuan, Yi Zhao, Yan Yang. “Applying hilbert-huang transform to identifying structural modal parameters. Education Technology and Training 2008. And 2008 International Workshop on Geoscience and Remote Sensing. ETT and GRS 2008.” International Workshop on, IEEE, Shanghai, 2, 2008, pp. 617-621.

[8] Feldman, Michael. “Considering high harmonics for identification of non-linear systems by Hilbert transform.” Mechanical Systems and Signal Processing, 21 (2), 2007, pp. 943-958.

[9] Shi, Z. Y., S. S. Law, X. Xu. “Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMD method. Journal of Sound and Vibration 321 (3), 2009, pp. 572-589.

[10] Bao, Chunxiao, Hong Hao, Zhong-Xian Li, Xinqun Zhu. “Time-varying system identification using a newly improved HHT algorithm.” Computers & Structures 87 (23), 2009, pp. 1611-1623.

[11] Pai, Frank P., Anthony N. Palazotto. “Detection and identification of nonlinearities by amplitude and frequency modulation analysis.” Mechanical Systems and Signal Processing 22 (5), 2008, pp. 1107-1132.

[12] Ma, Wann-Jiun, Wang Tang, Fan-Ren Chang. “Analysis of aircraft longitudinal long-period oscillation by Hilbert-Huang transform.” Proceedings of the 2006 National Technical Meeting of the Institute of Navigation, Monterey, CA, 2001, pp. 543-553.

[13] Rilling, Gabriel, Patrick Flandrin, Paulo Gonçalvés. “On empirical mode decomposition and its algorithms.” IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP, Grado, Italy, 2003, pp. 8-11.

[14] Qin, S. R., Y. M. Zhong. “A new envelope algorithm of Hilbert–Huang transform.” Mechanical Systems and Signal Processing, 20 (8), 2006, pp. 1941-1952.

[15] Meignen, Sylvain, Valérie Perrier. “A new formulation for empirical mode decomposition based on constrained optimization.” IEEE Signal Processing Letters 14 (12), 2007, pp. 932-935.

[16] Chang, Nai-Fu, Cheng-Yi Chiang, Tung-Chien Chen, Liang-Gee Chen. “Cubic spline interpolation with overlapped window and data reuse for on-line Hilbert Huang transform biomedical microprocessor.” Engineering in Medicine and Biology Society, Annual International Conference of the IEEE, Boston, 2011, pp. 7091-7094.

[17] Kokes, Josef, Nghien N. BA. “Using constrained cubic spline instead of natural cubic spline to eliminate overshoot and undershoot in Hilbert Huang Transform, Carpathian Control Conference (ICCC).” 13th International, IEEE, High Tatras, 2012, pp. 300-306.

[18] Press, William H. Numerical recipes: The art of scientific computing, 3rd edition, New York, NY: Cambridge university press, 2007.

[19] Huang, Norden E., Samuel S. Shen. “Hilbert-Huang transform and its applications.” Introduction to the Hilbert-Huang transform and its related mathematical problems. Singapore: World Scientific, 2005.

[20] Huang, Norden. E., Zheng Shen, Steven R. Long. “A new view of nonlinear water waves: The Hilbert Spectrum. Annual review of fluid mechanics, 31 (1), 1999, pp. 417-457.

[21] Roskam, Jan. “Airplane flight dynamics and automatic flight control.” Lawrence, KS: DARcorporation, 1995.

[22] Holleman, E. C. “Summary of Flight Tests To Determine the Spin and Controllability Characteristics of a Remotely Piloted, Large-Scale (3/8) Fighter Airplane Model.” National Aeronautics and Space Administration, Report no. NASA TN D-8052, 1976.