طراحی سیستم هدایت و کنترل یک ربات‌ هوایی براساس شتاب مسیر مرجع

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکدة مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 عضو هیات علمی / دانشکدة مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 عضو هیات علمی / دانشکدة مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در این مقاله سیستم هدایت و کنترل یک ربات هوایی برای دنبال‌کردن یک مسیر مرجع طراحی شده است. در الگوریتم ارائه‌شده، ابتدا فرمان‌های هدایت با استفاده از خطای مسیر حرکت ربات هوایی، به‌صورت فرمان‌های شتاب پسخوراند و پیشخوراند در دستگاه مختصات اینرسی استخراج شده و پس از آن با استفاده از یک ماتریس تبدیل، فرمان‌های شتاب به دستگاه مختصات بدنه نگاشته شده است. فرمان‌های شتاب براساس راهبردی جدید در دستگاه مختصات بدنه به فرمان‌های سرعت، زاویة وضعیت غلت و تاب و نیز زاویة نرخ گردش تبدیل‌شده، به‌طوری‌که مشکلات روش تبدیل قطبی را نداشته و قابلیت‌های ائرودینامیکی و عملکردی ربات هوایی و نیز محدودیت‌های متناظر با آنها لحاظ شده باشد. سپس، با استفاده از یک مدل شش درجه آزادی سیستم کنترلی طراحی شده است که بتواند فرمان‌های هدایت را دنبال کند. نتایج حاصل از شبیه‌سازی جامع سیستم با در نظر گرفتن مدل شش درجه آزادی ربات‌های هوایی نشان می‌دهد که الگوریتم هدایت و کنترل ارائه‌شده به‌خوبی فرمان‌های هدایت را اجرا و ربات هوایی با دقت بیشتری نسبت به روش‌های قبلی، مسیر مطلوب را دنبال کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Guidance and control system design for an aerial robot based on reference trajectory acceleration

نویسندگان [English]

  • Yousef Abbasi 1
  • Seyed Ali Akbar Moosavian 2
  • Alireza Basohbat Novinzadeh 3
چکیده [English]

In this paper, the guidance and control system of an aerial robot for tracking a reference trajectory is designed. The proposed algorithm uses the tracking errors to derive the guidance commands. These errors are in the form of acceleration command along inertial coordinate and the obtained commands are mapped to body fixed coordinated system. Then, using a new analytical approach the commands are converted to suitable inputs for the control system in the form of linear velocity, roll and pith angles. The proposed approach does not use the polar conversion, which in turn does produce nonphysical singularity defects. In addition, the aerodynamic and performance capability of aerial robots and corresponding limitations are considered. Using an aerial robot model with six-DOF, a control system is designed to track the designated guidance commands. Simulation results of a fixed wing aerial robot using six-DOF model reveal that the proposed guidance and control approaches significantly follow the guidance commands. In fact, the aerial robot tracks the desired trajectory with much higher accuracy than previous methods.

کلیدواژه‌ها [English]

  • aerial Robot
  • Guidance
  • Control
  • reference trajectory
  • acceleration command

[1] Costello, D., I. Kaminer, K. Carder, R. Howard. "The use of unmanned vehicle systems for coastal ocean surveys: Scenarios for joint underwater and air vehicle missions." Proceedings 1995 Workshop on Intelligent Control of Autonomous Vehicles, 1995, pp. 61-72.

[2] Hong, Y., Y. Kim. "Integrated Design of Rotary UAV Guidance and Control Systems Utilizing Sliding Mode Control Technique." International Journal of Aeronautical and Space Sciences, vol. 13, 2012, pp. 90-98.

[3] Medagoda, E. D. B., P. W. Gibbens. "Synthetic-waypoint guidance algorithm for following a desired flight trajectory," Journal of Guidance, Control and Dynamics, vol. 33, 2010, pp. 601-606.

[4] Sprinkle, J., J. M. Eklund, H. J. Kim, S. Sastry. "Encoding aerial pursuit/evasion games with fixed wing aircraft into a nonlinear model predictive tracking controller." Decision and Control, 2004, CDC, 43rd IEEE Conference on, 2004, pp. 2609-2614.

[5] Alexis, K., G. Nikolakopoulos, A. Tzes. "On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances." Asian Journal of Control, vol. 16, 2014, pp. 209-224.

[6] Guerreiro, B. J., C. Silvestre, R. Cunha, A. Pascoal. "Trajectory tracking nonlinear model predictive control for autonomous surface craft." Control Systems Technology, IEEE Transactions on, vol. 22, 2014, pp. 2160-2175.

[7] Kang, Y., J. K. Hedrick. "Linear tracking for a fixed-wing UAV using nonlinear model predictive control." Control Systems Technology, IEEE Transactions on, vol. 17, 2009, pp. 1202-1210.

[8] Park, S., J. Deyst, J. P. How. "Performance and Lyapunov stability of a nonlinear path following guidance method." Journal of Guidance, Control, and Dynamics, vol. 30, 2007, pp. 1718-1728.

[9] Nelson, D. R., D. B. Barber, T. W. McLain, R. W. Beard. "Vector field path following for miniature air vehicles." Robotics, IEEE Transactions on, vol. 23, pp. 519-529, 2007.

[10] Ratnoo, A., P. Sujit, M. Kothari. "Adaptive optimal path following for high wind flights," in 18th IFAC World Congress, Milano, Italy, 2011.

[11] Venkatraman, K., V. Mani, M. Kothari, I. Postlethwaite, D.-W. Gu. "A suboptimal path planning algorithm using rapidly-exploring random trees." International Journal of Aerospace Innovations, vol. 2, pp. 93-104, 2010.

[12] Osborne, J. R. Rysdyk. "Waypoint guidance for small UAVs in wind." AIAA Infotech@ Aerospace, vol. 193, 2005, pp. 1-12.

[13] Shehab, S., L. Rodrigues. "Preliminary results on UAV path following using piecewise-affine control." Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on, 2005, pp. 358-363.

[14] Cao, C., N. Hovakimyan, I. Kaminer, V. V. Patel, V. Dobrokhodov. "Stabilization of cascaded systems via L1 adaptive controller with application to a UAV path following problem and flight test results." in American Control Conference, 2007. ACC'07, 2007, pp. 1787-1792.

[15] Da Silva, J. E., J. B. De Sousa. "A dynamic programming approach for the motion control of autonomous vehicles," in Decision and Control (CDC), 2010 49th IEEE Conference on, 2010,
pp. 6660-6665.

[16] Karimi, J., S. H. Pourtakdoust. "Integrated motion planning and trajectory control system for unmanned air vehicles," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 227, 2013, pp. 3-18.

[17] Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls: DARcorporation, 2003.

[18] Stevens, B. L., F. L. Lewis, Aircraft control and simulation, John Wiley & Sons, 2003.

[19] Lee, C.H., M.G. Seo, M. J. Tahk, J. I. Lee, B. E. Jun. "Missile acceleration controller design using pi and time-delay adaptive feedback linearization methodology." arXiv preprint arXiv:1209.0864, 2012.

[20] Beard, R. W., T. W. McLain, Small unmanned aircraft: Theory and practice, Princeton University Press, 2012.

[21] Soleymani, T., F. Saghaf. "Fuzzy trajectory tracking control of an autonomous air vehicle," in Mechanical and Electronics Engineering (ICMEE), 2010 2nd International Conference on, 2010, pp. V2-347-V2-352.

[22] Lambrechts, P., M. Boerlage, M. Steinbuch, "Trajectory planning and feedforward design for high performance motion systems." Feedback, vol. 14, 2004, p. 15.

[23] Ito, K., M. Iwasaki, H. Hirai. "Improvement of trajectory tracking performance using pseudo feedforward control." in Mechatronics (ICM), 2013 IEEE International Conference, 2013, pp. 768-773.

[24] Yan, M.T., Y.J. Shiu. "Theory and application of a combined feedback–feedforward control and disturbance observer in linear motor drive wire-EDM machines." International Journal of Machine Tools and Manufacture, vol. 48, 2008, pp. 388-401.

[25] Chang, P. H., G. R. Cho. "Enhanced feedforward control of non-minimum phase systems for tracking predefined trajectory," International Journal of Control, vol. 83, 2010, pp. 2440-2452.

[26] Blakelock, J. H. Automatic control of aircraft and missiles, John Wiley & Sons, 1991.

[27] McLean, D., "Automatic flight control systems (Book)," Englewood Cliffs, NJ, Prentice Hall, 1990, 606.