تحلیل پارامتریک رفتار غیردائمی یک موتور توربوجت بر مبنای مدلسازی غیرخطی ائروترمودینامیکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک ‌اشتر

2 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

پژوهش حاضر به تحلیل پارامتریک رفتار گذرای یک موتور توربوجت بر مبنای مدلسازی غیردائمی و مبتنی بر معادلات ائروترمودینامیکی حاکم می‌پردازد. مدل دینامیکی مورد نظر در محیط سیمولینک نرم‌ افزار متلب توسعه یافته است. از مجموع عوامل مؤثر بر عملکرد گذرا، سه عامل مهم شامل دینامیک شفت، دینامیک حجم و دینامیک انتقال حرارت در مدل مورد نظر گنجانده شده است. جهت اعتبارسنجی، نتایج مدل شامل تغییرات میزان دور موتور، نیروی پیشرانش و دمای گازهای خروجی از محفظة احتراق و توربین در یک عملیات شتاب معکوس (از 100 تا 70 درصد دور نقطة طراحی)، با نتایج حاصل از نرم‌افزار شبیه‌سازی توربین گاز یا اصطلاحاً جی. اس. پی.مقایسه شده است. نتایج حاکی از توانایی بالای مدل در شبیه‌سازی عملکرد گذرا می‌باشد، به‌نحوی‌که بیشینة درصد خطا کمتر از 4 درصد در میزان نیروی جلوبرندگی می‌باشد. سپس در بررسی پاسخ گذرا، عملیات افزایش دور موتور با سه نرخ متفاوت افزایش میزان مصرف سوخت، مورد بررسی قرار گرفته است. نتایج نشان می‌دهد که با افزایش نرخ مصرف سوخت، نگرانی‌های عملکردی مانند فرارفت دما جریان در ورود به توربین و نیز احتمال وقوع پدیدة سرج در کمپرسور تشدید می‌شود. به‌گونه‌ای که در مدل حاضر شتاب‌دهی در مدت 2/5 ثانیه می‌تواند دمای ورود به توربین را تا حدود 21 کلوین افزایش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Parametric analysis of transient performance of a turbojet engine based on nonlinear aero-thermodynamic modeling approach

نویسندگان [English]

  • Mohamad Faraji 1
  • Mehdi Jahromi 2
  • Jamasb Pirkandi 2
  • Mostafa Mahmoodi 2
چکیده [English]

The present study deals with the parametric analysis of a turbojet engine performance based on transient aero-thermodynamic governing equations. The required dynamic model developed in Simulink environment. From the complex factors affecting on transient performance, three factors including rotor dynamic, volume dynamic and heat soakage is presented in the model. To validate the model results, a deceleration operation from 100% to 70% of the design rotor speed is carried out and rotational speed, thrust, turbine inlet temperature and turbine exhaust gas temperature of the present model results were compared with commercial program GSP. The results show the ability of the model to simulate the transient performance so that the maximum percentage error is less than 4 percent in thrust prediction. Then in the transient response of the engine acceleration from 70% to 100% of the rotor speed, three different rate of fuel consumption is studied. The results indicate that with sudden acceleration, temperature overshoot at the inlet to the turbine and the occurrence of compressor surge can be harmful, such that the engine acceleration during 2.5 (s) can increase turbine inlet temperature to about 21 K with respect to reference value.

کلیدواژه‌ها [English]

  • Modeling
  • Turbojet
  • Simulink
  • Shaft Dynamics
  • Volume Dynamics
  • Heat Transfer Dynamics

[1] Asgari, H., Ch. Xiaoqi, R. Sainudiin. “Modelling and Simulation of gas turbines.” Modelling Identification and Control 20 (3), 2013, pp. 253-268.

[2] Sanghi, V., B. K. Lakshmanan, R. Rajasekaran. “Aerothermal Model for Real-Time Digital Simulation of a Mixed-Flow Turbofan Engine.” Journal of Propulsion and Power 17(3), 2001, pp. 629-635.

[3] Changduk, K., J. Park. “Trannsient Performance Simulation of Propulsion System for CRW Type UAV using Simulink.” ICAS, 2004.

[4] Rahman, N. U., J. F. Whidborne. “A numerical investigation into the effect of engine bleed on performance of a single-spool turbojet engine.” Journal of Aerospace Engineering 222, 2008, pp. 939-949.

[5] منتظری، م.، م. صفرآبادی فراهانی. "مدلسازی و شبیه‌سازی عملکرد توربین گاز هوایی به‌منظور طراحی سیستم کنترل سوخت." نشریه بین‌المللی علوم مهندسی دانشگاه علم و صنعت ایران 19(10)، 1387، ص. 107-99.

[6] منتظری، م.، ح. فاضلی، س. جعفری. "مدلسازی عملکرد موتور توربوجت در فاز استارت"، دهمین همایش انجمن هوافضای ایران، دانشگاه تربیت مدرس، 1389.

[7] Chiesa, S., G. Medici, M. Balbo. Turbojet Analytical Model Development and Validation.” 28th ICAS, 2012.

[8] Ujam, A. J., F. Ifeacho, G. Anakudo. “Modeling Performance Characteristics of a Turbojet Engine.” Journal of Manufacturing, Material and Mechanical Engineering Research 1 (1), 2013, pp. 1-16.

[9] Walsh, P. P., P. Fletcher. Gas Turbine Perfor­mance, Blackwell Science Publishing, 2004.

[10] Cohen, H., G. F. C. Ragers, H. I. H. Saravanamuttoo. Gas Turbine Theoury, 4th ed., 1996.

[11] Martin, S. “Development and Validation of a Civil Aircraft Engine Simulation Model For Advanced Controller Design.” PhD dissertation, Leicester University, 2009.

[12] Burlamaqui, F., F. A. C. Goes, A. B. V. Oliveira, R. W. Bosa, G. S. Fernandes. “Dynamic Modelling Nonlinear and Control System for a Turboshaft.” 12th Pan-American Congress of Applied Mechanics, Port of Spain, Trinidad, 2012.

[13] Schur, F. “A Transient Model of a Turbofan Engine in Simulink.” Deutscher Luft- und Raumfahrt congress, 2013.

[14] GSP Development Team, 2013, GSP 11 User Manual, National Aerospace Laboratory (NLR), http://www.gspteam.com (accessed March 01, 2016)