مطالعه رفتار خمشی تورق در صفحه کامپوزیتی دایروی با استفاده از تئوری تغییرشکل برشی مرتبه سوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.

2 عضو هیات علمی / دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران

چکیده

سازه­های کامپوزیتی به دلیل ویژگی­های عالی نظیر انعطاف پذیری و نسبت استحکام به وزن بالا و همچنین اهمیتی که در صنایع دارند، همواره مورد توجه قرار گرفته­اند. کیفیت کامپوزیت­ها در اثر عیوبی که در آن­ها حین تولید یا بارگذاری بوجود می­آید، کاهش می­یابد. عیب تورق که یکی از مهمترین و متداول­ترین عیوب موجود در کامپوزیت­ها می­باشد، ممکن است تحت بارگذاری نظیر بارگذاری خمشی با رشد نیز همراه باشد که این خود باعث ایجاد شکست در کامپوزیت­ها می­شود. در این تحقیق رشد تورق یک صفحه­ی کامپوزیتی دایره­ای مورد بررسی قرار گرفت. هندسه­ی تورق دایره­ای شکل و بارگذاری از نوع خمشی فرض شد. معادلات غیرخطی حاکم ابتدا با در نظر گرفتن تئوری تغییرشکل برشی مرتبه سوم بدست آمدند و سپس با استفاده از روش هموتوپی طیفی حل ­شدند. علاوه براین، اثرات شعاع و عمق تورق روی نرخ رهایش انرژی بررسی گردید و مشاهده شد که با افزایش شعاع تورق، نرخ رهایش انرژی تا شعاع تورق بحرانی 0/7 افزایش یافته و سپس کاهش می­یابد. همچنین با افزایش عمق تورق از 0/14 به 0/48 نرخ رهایش انرژی افزایش می­یابد. نتایج این تحقیق مطابقت خوبی را با نتایج اجزای محدود و نتایج تحلیلی دیگر نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of bending behavior of delamination in circular composite plate using third order shear deformation theory

نویسندگان [English]

  • Ahmad Haghani 1
  • mehdi mondali 2
1 Assistant Professor, Department of Mechanical Engineering, Faculty of Technical engineering, Shahrekord Branch, Islamic Azad University
2 Assistant Professor, Department of Aerospace Engineering, Science and Research Branch, Islamic Azad University
چکیده [English]

The composite structures have many applications in military, aerospace, marine, transportation, and sporting goods industries where the strength to weight performance of the structure is especially important. The quality and strength of composite plates are always decreased due to defects arisen during construction and service. One of the important and most common defects in composite plates is delamination and its propagation. In the present research the delamination propagation of a composite circular plate is investigated. The geometry of delamination is also assumed to be circular and the plate is subjected to a bending load. The nonlinear governing equations are first obtained using third order shear deformation theory. Then, these equations are coded and solved using spectral homotopy analysis method (SHAM). Moreover, the effects of radius and depth of the delamination on energy release rate are studied.  It can be seen that the radius of delamination increases, the strain energy release rate increases to a critical radius 0.7 and then decreases. Also, with increasing delamination depth from 0.14 to 0.48, the the strain energy release rate increases. The results of the present research are in good agreement with the FE results and also the available analytical results.

کلیدواژه‌ها [English]

  • Composite circular plate
  • circular delamination
  • bending load
  • third order shear deformation theory
  • spectral homotopy analysis method (SHAM)
[1] B. D. Davidson,  F. O. Sediles, Mixed-Mode I–II–III Delamination Toughness Determination Via a Shear–Torsion-Bending Test, Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 6, pp. 589-603, 2011.
[2] A. A. Mekonnen, K. Woo, M. Kang, I-G. Kim, Effects of size and location of initial delamination on post-buckling and delamination propagation behavior of laminated composites, International Journal of Aeronautical and Space Sciences, Vol. 21, No. 1, pp. 80-94, 2020.
[3] M. Ma, W. Yao, P. Li, Critical Energy Release Rate for Interface Delamination of Asymmetrical Specimen, Composite Structures, (Accepted), 2020.
[4] N. Saeedi, K. Sab, J.-F. Caron, Cylindrical Bending of Multilayered Plates with Multi-Delamination Via a Layerwise Stress Approach, Composite Structures, Vol. 95, No. 4, pp. 728-739, 2013.
[5] F. Aylikci, S. D. Akbarov, N. Yahnioglu, 3d Fem Analysis of Buckling Delamination of a Piezoelectric Sandwich Rectangular Plate with Interface Edge Cracks, Mechanics of Composite Materials, Vol. 55, No. 6, pp. 797-810, 2020.
[6] N. Hebbar, I. Hebbar, O. Djamel, M. Bourada, Numerical Modeling of Bending, Buckling, and Vibration of Functionally Graded Beams by Using a Higher-Order Shear Deformation Theory, Frattura ed Integrità Strutturale, Vol. 14, No. 52, pp. 230-46, 2020.
[7] H. Daghigh, V. Daghigh, A. Milani, D. Tannant, T. Lacy, J. N. Reddy, Nonlocal Bending and Buckling of Agglomerated Cnt-Reinforced Composite Nanoplates, Composites Part B: Engineering, Vol. 183, No. 1, pp.107716, 2020.
[8] Sayyad, S. Atteshamuddin, M. Yuwaraj Ghugal, Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory, International Journal of Applied Mechanics, Vol. 12, No. 1,pp. 2050007, 2020.
[9] Ma, Mingze, Weixing, Yao, Piao, Li, Critical Energy Release Rate for Interface Delamination of Asymmetrical Specimen." Composite Structures, (Accepted), 2020.
[10] Y. Li, Y. Fu, Y. Mao, Analysis of Delamination Fatigue Growth for Delaminated Piezoelectric Elasto-Plastic Laminated Beams under Hygrothermal Conditions, Composite Structures, Vol. 93, No. 2, pp. 889-901, 2011.
[11] T. Q. Lu, W. X. Zhang, T. Wang, The Surface Effect on the Strain Energy Release Rate of Buckling Delamination in Thin Film–Substrate Systems, International Journal of Engineering Science, Vol. 49, No. 9, pp. 967-975, 2011.
[12] J. N. Reddy, Theory and Analysis of Elastic Plates and Shells,  pp. 359-399, CRC press, 2006.
[13] D. Chen, L. Dai, Delamination Growth of Laminated Circular Plates under in-Plane Loads and Movable Boundary Conditions, Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 11, pp. 3238-3249, 2013.
[14] D. Chen, C. Chen, Y. Fu, The Postbuckling Analysis of Laminated Circular Plate with Elliptic Delamination, Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 1, pp. 537-549, 2011.
[15] D. Chen, C. Chen, Y. Fu, L. Dai, Growth of Delamination for Laminates Circular Plates Subjected to Transverse Loads, International Mechanical Engineering Congress and
Exposition,
New York, USA, 2009.
[16] A. Haghani, M. Mondali, S. A. Faghidian, Linear and Nonlinear Flexural Analysis of Higher-Order Shear Deformation Laminated Plates with Circular Delamination, Acta Mechanica, Vol. 229, No. 4, pp 1631–1648, 2018.
[17] N. Kharghani, C. G. Soares, Influence of Different Parameters on the Deflection of Composite Laminates Containing through-the-Width Delamination Using Layerwise Hsdt, Composite Structures, Vol. 15, No. 4, pp. 1080-1091, 2015.
[18] S. Nikrad, H. Asadi, A. Akbarzadeh, Z. Chen,  On Thermal Instability of Delaminated Composite Plates, Composite Structures, Vol. 132, No. 4, pp. 1149-1159, 2015.
[19] E. Cheshmeh, M. Karbon, A. Eyvazian, D. Jung, M. Habibi M. Safarpour, Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory.  Mechanics Based Design of Structures and Machines, pp. 1-24, 2020.
[20] M. Ertz, K. Knothe, A Comparison of Analytical and Numerical Methods for the Calculation of Temperatures in Wheel/Rail Contact, Wear, Vol. 253, No. 3–4, pp. 498-508, 2002.
[21] Z. Z. Ganji, D. D. Ganji, M. Esmaeilpour, Study on Nonlinear Jeffery–Hamel Flow by He’s Semi-Analytical Methods and Comparison with Numerical Results, Computers & Mathematics with Applications, Vol. 58, No. 11–12, pp. 2107-2116, 2009.
[22] Y. Yang, J. Wang, X. Wang, Y. Dai, A General Method to Predict Unbalance Responses of Geared Rotor Systems, Journal of Sound and Vibration, Vol. 381, No. 4, pp. 246-263, 2016.
[23] E. J. Barbero, F. Vetere, A. Madeo, R. Zinno, Analytic Integration of Singular Kernels for Boundary Element Analysis of Plane Orthotropic Media, Composites Part B: Engineering, Vol. 108, No. 4, pp. 393-412, 2017.
[24] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, pp. 671-721,  CRC press, 2004.
[25] L. D. Elsgolc, Calculus of Variations,  pp. 64-79, Courier Corporation, 2012.
[26] S. Liao, Notes on the Homotopy Analysis Method: Some Definitions and Theorems, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 4, pp. 983-997, 2009.
[27] M. Kargarnovin, S. Faghidian, Y. Farjami, G. Farrahi, Application of Homotopy-Padé Technique in Limit Analysis of Circular Plates under Arbitrary Rotational Symmetric Loading Using Von-Mises Yield Criterion, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 4, pp. 1080-1091, 2010.
[28] S. Liao, Advances in the Homotopy Analysis Method, pp.1-85, World Scientific, 2013.
[29] S. Motsa, P. Sibanda, F. Awad, S. Shateyi, A New Spectral-Homotopy Analysis Method for the Mhd Jeffery–Hamel Problem, Computers & Fluids, Vol. 39, No. 7, pp. 1219-1225, 2010.
[30] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, pp. 2-88, CRC press, 2003.
[31] C.-H. Lin, Design of a Composite Recurrent Laguerre Orthogonal Polynomial Neural Network Control System with Ameliorated Particle Swarm Optimization for a Continuously Variable Transmission System, Control Engineering Practice, Vol. 49, No. 4, pp. 42-59, 2016.
[32] C. T. Sun, Z. H. Jin, Fracture Mechanics,  pp. 11-55, Academic Press, Boston, 2012.