طراحی بهینه سامانه کنترل پیشرانش تک مؤلفه‌ای‏ آب‌اکسیژنه برای یک سامانه انتقال مداری ماهواره تحت عدم قطعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده فناوری‌های نوین و مهندسی هوافضا، دانشگاه شهید بهشتی

2 عضو هیات علمی / دانشکده فناوری‌های نوین و مهندسی هوافضا، دانشگاه شهید بهشتی

3 عضو هیات علمی / دانشکده فنی و مهندسی، دانشگاه زابل

چکیده

در نظر گرفتن عدم قطعیت یک بخش جداناپذیر در مسائل طراحی صنعتی و نزدیک به واقعیت است. در نظر نگرفتن این عدم قطعیت‏ها در طراحی می‏تواند منجر به کاهش کارایی سامانه و حتی بدتر در برخی از مسائل موجب شکست مأموریت به طور کامل شود. در پژوهش حاضر به پیاده‏سازی یکی از روش‏های طراحی تحت عدم قطعیت یعنی بهینه‌سازی بدترین حالت برای طراحی یک سامانه پیشرانش تک مؤلفه‌ای آب‌اکسیژنه پرداخته شده است. روش پیشنهادی در این پژوهش شامل دو نوع عدم قطعیت شناختی و غیر شناختی نیز می‏شود. این روش با جداسازی پارامترها و متغیرهای طراحی برای هر سه نوع بیان عدم‏قطعیت تنک،تک بازه و چند بازه‏ای به جستجوی نقطه بهینه به کمک الگوریتم ژنتیک می‏پردازد. طراح در انتخاب نوع توزیع بی‌تأثیر بوده و نوع توزیع بسته به داده‏ها‏ی موجود تعیین می‏شود. به‌عبارت‌دیگر حتی عدم قطعیت در نوع توزیع و پارامترهای آن نیز مدنظر قرار گرفته است. همچنین برای تخمین پارامترهای توزیع از روش مبتنی بر حداکثر درست‏نمایی استفاده می‏شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal design of monopropellant hydrogen peroxide propulsion control system for a satellite orbital transfer system under uncertainty

نویسندگان [English]

  • Mohammad Fatehi 1
  • Alireza Toloei 2
  • Behroz Keshtegar 3
1 Ph.D. Student, Department of Aerospace Engineering, Shahid Beheshti University
2 Associate Professor, Department of Aerospace Engineering, Shahid Beheshti University
3 Associate Professor, Faculty of Civil Engineering, University of Zabol
چکیده [English]

Considering uncertainty is an Inseparable part of industrial design. Ignoring these uncertainties in design can reduce system performance and, even worse, lead to failing the mission entirely in some cases. In the present study, the worst-case optimization adopted is used to design of hydrogen peroxide propulsion system. The proposed method in this study includes two types of epistemic and aleatory uncertainty. This method searches for the optimal point using the genetic algorithm by separating design parameters and variables for all three types of sparse points, single-interval and multi-interval uncertainty representations. The designer is ineffective in choosing the type of distribution, and the type of distribution is determined depending on the available data. In other words, even uncertainty in the type of distribution and its parameters has been considered. Also, the method of maximum likelihood-based is used to estimate the distribution parameters.

کلیدواژه‌ها [English]

  • Design under uncertainty
  • Optimization
  • propulsion
  • Hydrogen peroxide
  • Interval data uncertainty
[1] Yao, Wen, Xiaoqian Chen, Wencai Luo, Michel Van Tooren, and Jian Guo. (2011). “Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles” Progress in Aerospace Sciences 47, no. 6 (2011): 450-479.
[2] Fatehi, Mohammad, “Reliability Based Robust Design Optimization of Satellite Orbital Transfer System” (Phd Dissertation Proposal, Shahid Beheshti University, 2019.)
[3] Ren, Ziyan, Minh-Trien Pham, and Chang Seop Koh. “Robust global optimization of electromagnetic devices with uncertain design parameters: comparison of the worst case optimization methods and multiobjective optimization approach using gradient index” IEEE Transactions on Magnetics 49, no. 2 (2013): 851-859.
[4] Steiner, Gerald, Andreas Weber, and Christian Magele”Managing uncertainties in electromagnetic design problems with robust optimization.” IEEE transactions on magnetics 40, no. 2 (2004): 1094-1099.
[5] Fatehi, Mohammad, “Robust Design Optimization of launch Vehicle Upper-Stage”. (MSc thesis.2017)
[6] Oberkampf WL, Helton JC, Joslyn CA, Wojtkiewicz SF, Ferson S, “Challenge Problems: uncertainty in system response given uncertain parameters”, Reliability Engineering and System Safety, 85 (2004) 11-19.
[7] Fersona S, Joslyn CA, Helton JC, Oberkampf WL, Sentz K. “Summary from the epistemic uncertainty workshop: consensus amid diversity”. Reliability Engineering and System Safety 2004; 85(1-3): 355- 369.
[8] Johnson N.L, Kotz S. and Balakrishnan N. (1994). “Continuous Univariate Distributions”, volume 1 and volume 2 (1994).
[9] DeBrota, Swain, Roberts, Venkataraman, ,”Input modeling with the Johnson System of distributions”, (1988).
[10] Snedecor, George W. and Cochran, William G., “Statistical Methods”, Iowa State University Press. (1989).
[11] Monaco, Jeffrey F., et al. “Automated Methods to Calibrate a High-Fidelity Thrust Deck to Aid Aeropropulsion Test and Evaluation.” ASME Turbo Expo 2008: Power for Land, Sea, and Air. American Society of Mechanical Engineers, (2008).
[12] Modisette, Jason P. “Maximum Likelihood Approach to State Estimation in Online Pipeline Models.” 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, (2012).
[13] Xiao, Jie, and Bohdan Kulakowski. “Hybrid genetic algorithm: A robust parameter estimation technique and its application to heavy duty vehicles.” Journal of dynamic systems, measurement, and control 128.3 (2006): 523-531.
[14] Fisher R A “On the probable error of a coefficient of correlation deduced from a small sample”, Metron, (1921)  1:3-32
[15] Haldar, A., Shankar Mahadevan, “Probability, reliability, and statistical methods in engineering design”, John Willey & Sons. Inc., New York (2000).
[16] Dey, Prithbey Raj. "Robust and reliability-based design optimization under epistemic uncertainty." (2015).
[17] Zaman, Kais, et al. "Robustness-based design optimization under data uncertainty." Structural and Multidisciplinary Optimization 44.2 (2011): 183-197.
[18] Sankararaman S, Mahadevan S (2011) “Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data”, Reliability Engineering and System Safety, 96 (2011) pp. 814-824.
[19] Zaman, Kais, and Prithbey Raj Dey. "Likelihood-based representation of epistemic uncertainty and its application in robustness-based design optimization.” Structural and Multidisciplinary Optimization (2017).
[20] Nosratolahi , Basohbat Novinzadeh, Zakeri, Bemani, Emadi Noori. “Integrated Design of Orbital Transfer Block in an Optimized and Multistep Converged Environment”,JSST,(2016).
[21] Hammond, Walter Edward. “Design methodologies for space transportation systems”. AIAA, 2001.
[22] Adami, Amirhossein, Mahdi Mortazavi, and Mehran Nosratollahi. "Multidisciplinary Design Optimization of Hydrogen Peroxide Monopropellant Propulsion System using GA and SQP." International Journal of Computer Applications 113.9 (2015).
[23] Nosratollahi, Fatehi, Adami, “Multidisciplinary Design Optimization of Hydrazine Monopropellant Propulsion System for Attitude Control of an Upperstage by GA”.3rd National and First International Conference in applied research on Electrical, Mechanical and Mechatronics Engineering.(2015).
[24] Tajmar, Martin. “Advanced space propulsion systems”. Springer Science & Business Media, (2012).
[25] Dieter K., and David H. Huang. “Modern engineering for design of liquid-propellant rocket engines”. Vol. 147. AIAA, 1992.
[26] Fatehi, Mohammad, Mehran Nosratollahi, Amirhossein Adami, and SM Hadi Taherzadeh. “Designing Space Cold Gas Propulsion System using Three Methods: Genetic Algorithms, Simulated Annealing and Particle Swarm”International Journal of Computer Applications 118, no. 22 (2015).
[27] Krejci, David, et al. "Structural impact of honeycomb catalysts on hydrogen peroxide decomposition for micro propulsion." Chemical Engineering Research and Design 90.12 (2012)
[28] Huzel, Dieter K., and David H. Huang. “Modern engineering for design of liquid-propellant rocket engines”. Vol. 147. AIAA, 1992.
[29] Adami, Amirhossein, Mahdi Mortazavi, and Mehran Nosratollahi. "Multidisciplinary Design Optimization of Hydrogen Peroxide Monopropellant Propulsion System using GA and SQP." International Journal of Computer Applications 113.9 (2015).
[30] Sutton, George P., and Oscar Biblarz. “Rocket propulsion elements”. John Wiley & Sons, (2010).
[31] Amri, Redha, D. Gibbon, and T. Rezoug. "The design, development and test of one newton hydrogen peroxide monopropellant thruster." Aerospace Science and Technology25, no. 1 (2013): 266-272.
[32] Chiasson, Thomas Michael. "Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust." (PhD diss., Massachusetts Institute of Technology, 2012).
[33] General Kinetics Inc. Monopropellant Thruster Datasheet.
[34] Micro Aerospace Solution Monoperopellant Datasheet. http://www.micro-a.net/thrusters-tmpl.html
[35] McRight, Patrick, et al. “Confidence testing of Shell-405 and S-405 catalysts in a monopropellant hydrazine thruster”. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. (2005).
[36] Sutton, George P., and Oscar Biblarz. “Rocket propulsion elements”. John Wiley & Sons, (2016).
[37] Taylor, Travis S. “Introduction to rocket science and engineering”. CRC Press, 2009.
[38] Wernimont, Eric. "System trade parameter comparison of monopropellants: hydrogen peroxide vs hydrazine and others." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 5236. 2006.
[39] Davis, Noah S., and John H. Keefe. "Concentrated hydrogen peroxide as a propellant." Industrial & Engineering Chemistry48, no. 4 (1956): 745-748.
[40] http://www.psi-pci.com/Pressurant_Tanks.htm.