طراحی کنترلر برگشت به عقب تقویت‌شدة تطبیقی و مقاوم برای ربات‌های پرندة چهارملخه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد / گروه مهندسی مکانیک، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفتة کرمان

2 عضو هیات علمی / گروه مهندسی مکانیک، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفتة کرمان

چکیده

در این مقاله کنترل حرکت ربات چهارملخه با یک روش جدید برگشت به عقب تقویت‌شده ارائه شده است. با توجه به غیرخطی بودن معادلات دینامیکی، طراحی یک کنترلر مناسب جهت پایدارسازی وضعیت روی مسیر حرکت دلخواه ضروری است. برای کنترل ربات، از روش برگشت به عقب استفاده شده است. در روش برگشت به عقب مرسوم، عبارت‌های غیرخطی سیستم در قانون کنترلی ظاهر می‌شوند. بنابراین قانون کنترلی به اطلاعات دقیق عبارت‌های غیر‌خطی مدل دینامیکی وابسته است. در این پژوهش عبارت‌های غیرخطی ظاهرشده در کنترلر برگشت به عقب توسط روش تقریب تابعی، به‌صورت ترکیبی از توابع پایه وزن‌دار، تقریب و وزن توابع توسط قوانین تطبیقی مبتنی بر عملگر تصویر تخمین زده شده‌اند. بنابراین عدم نیاز کنترلر پیشنهادی به اطلاعات عبارت‌های‌ غیرخطی مدل دینامیکی، از مزیت‌های اصلی آن است. تحلیل پایداری سیستم توسط تئوری لیاپانوف انجام شده است و برای اعتبارسنجی روش پیشنهادی، نتایج چندین شبیه‌سازی حرکت ربات چهارملخه ارائه شده است. با توجه به نتایج شبیه‌سازی، روش کنترلی پیشنهادی به‌خوبی ربات را در نزدیکی مسیر مطلوب، با وجود حضور نامعینی مدل دینامیکی و اغتشاشات خارجی، قرار داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Enhanced backstepping controller design as adaptive and robust for quadrotors

نویسندگان [English]

  • mohammad mohammadighnatghestani 1
  • Reza Dehghani 2
چکیده [English]

In this paper, a new enhanced backstepping controller is presented for control of quadrotors. Dynamic equations of the robot are nonlinear. Therefore, a convenience controller is required to stabilize the robot on desired motion. Here, backstepping method is used for control of the robot. In the conventional backstepping method, nonlinear terms of dynamic equations appear in the control law. Therefore, control law depends on accuracy of the nonlinear terms in the dynamic equations. In this research, nonlinear terms in the backstepping controller are estimated by function approximate method and adaptive laws based on projection operator. Therefore, in the proposed controller, the nonlinear terms of the dynamic model is not required to know accurately. This is the main novelty of the paper. The stability analysis is performed by Lyapanov theory. In order to validation of the proposed approach, several numerical simulation results are presented. Simulation results show the proposed controller can force the quadrotors in neighborhood of the desired motion in presence of dynamic model uncertainties and external disturbances.

کلیدواژه‌ها [English]

  • quadrotor
  • backstepping method
  • function approximate technique
  • projection operator
  • Adaptive control

[1] G. Hoffmann, H. Huang, S. Waslander, C. Tomlin, Quadrotor helicopter flight dynamics and control: theory and experiment, Proc. AIAA Guidance, Navigation and Control Conference, 2007.

[2] S. Bouabdallah, A. Noth, R. Siegwart, design and control of quadrotor with application to autonomous flying, IEEE/RSJ International Conference on Intelligent Robots and Systems Proceeding, 2007.

[3] A. Benallegue, A. Mokhtari, L. Fridman, High-order sliding mode observer for a quadrotor UAV, international journal of robust and nonlinear control, 2007.

[4] J. Kim, M. sung Kang, S. Park, Accurate Modeling and Robust Hovering Control for a  Quadrotor VTOL Aircraft, J Intell Robot Syst, Vol. 57, pp. 9–26, 2010.

[5] D. Lee, H. Jin Kim, S. Sastry, Feedback linearization vs. adaptive Sliding mode control for quadrotor helicopter, International Journal of Control, Automation and Systems, Vol. 7, pp. 419-428, 2009.

[6] H. Voos, Nonlinear Control of Quadrotor Micro UAV using Feedback-Linearization, In Proceedings of the IEEE International Conference on Mechatronics Malaga, Spain, 2009.

[7] T. Sangyam, T, P. Laohapiengsak, W. Chongcharoen, Path Tracking of UAV Using Self-Tuning PID Controller Based on Fuzzy Logic, SICE Annual Conference Taipei, Taiwan 2010.

[8] M. Santos, V. Lopez, F. Morata, Intelligent Fuzzy Controller of Quadrotor, IEEE, p. 141-146, 2010.

[9] M. Guisser, H. Medromi, A high gain observer and sliding mode controller for an autonomous quadrotor helicopter, International Journal of Intelligent Control and Systems. Vol. 14, No. 3, pp. 204-212, 2009.

[10] L. Luque Vega, B. Castillo-Toledo, Robust block second order sliding mode control for a quadrotor, Journal of the Franklin Institute, 2011.

[11] G. Hoffmann, H. Huang ,S. Waslander, C. Tomlin, Precision flight control for a multi-vehicle quadrotor  helicopter testbed, Control Engineering Practice, Vol. 19, pp. 1023–1036, 2011.

[12] P. Martin, E. Salaun, The True Role of Accelerometer Feedback in Quadrotor Control, Proc. Int. Conf. Robotics And Automation (ICRA), pp. 1623-1629, 2010.

[13] J. Ajmera, V. Sankaranarayanan, Point-to-Point Control of a Quadrotor: Theory and Experiment, IFAC-PapersOnLine, Vol. 49, No. 1, pp. 401–406, 2016.

[14] P. Kokotovic, M. Arcak, Nonlinear and Adaptive Control: An Abbreviated Status Report, The 9th Mediterranean Conference on Control and Automation Dubrovnik, Croatia, June 2001.

[15] F. Mazenc, A. Iggidr, Backstepping with bounded feedbacks, Systems & Control Letters, Vol. 51, pp. 235-245, 2004.

[16] A. Ahmad, M. Wang Daobo, Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter, Chinese Journal of Aeronautics, Vol. 21, pp. 261-268, 2008.

[17] M. Ariffanan Mohd Basri, A. Rashid Husain, K. A. Danapalasingam, Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle, J Intell Robot Syst, Vol. 79, pp. 295–321, 2015.

[18] S. Nadda, A. Swarup, Development of Backstepping Based Sliding Mode Control for a Quadrotor, International Colloquium on Signal Processing & its Applications (CSPA), 7-9 Mac, Kuala Lumpur, Malaysia, 2014.

[19] H. Ramirez-Rodriguez, V. Parra-Vega, A. Sanchez-Orta, O. Garcia-Salazar, Robust Backstepping Control Based on Integral Sliding Modes for Tracking of  Quadrotors, J Intell Robot Syst, Vol. 73, pp. 51-66, 2013.

[20] L. Chang Lin, W. Cong Xu, Modeling and Adaptive Backstepping Control for Quadrotor Robots with Blade Flapping, International Journal of Mechanical Systems Engineering,  IJMSE, an open access journal, Vol. 2, 2016.

[21] R. S. Athulya, C. R. Ashima, Adaptive Backstepping Control of Quadrotor Unmanned Aerial Vehicles, International Advanced Research Journal in Science, Engineering and Technology National Conference on Emerging Trends in Engineering and Technology, Vol. 3, Special Issue 3, August 2016.

[22] P.C. Chen, A. C. Huang, Adaptive Sliding Control of Active Suspension Systems based on Function Approximation Technique, Journal of Sound and Vibration, Vol. 282, No. 3-5, pp. 1119-1135, 2005.

[23] E. Lavretsky, T. E. Gibson, Projection operator in adaptive systems, arXiv preprint arXiv:1112.4232, 2011.

[24] D. Zhang, H. Qi, X. Wu, Y. Xie, J. Xu, The Quadrotor Dynamic Modeling and Indoor Target Tracking Control Method, Mathematical Problems in Engineering, Article ID 637034, 2014.

[25] H. Baruh, Analytical dynamics. Boston: McGraw-Hill, 1999.