هدایت و کنترل پرتابه دوران دوگان با ساختار آبشاری مبتنی بر وارون دینامیک و کنترل تطبیقی مدل مرجع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

2 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

چکیده

در تحقیق حاضر هدایت و کنترل یکپارچه پرتابه دوران دوگان با کمک ساختار آبشاری بررسی شده است. برای این منظور از مدل غیرخطی پرتابه در دینامیک هفت درجه آزادی استفاده شده است و اثرات کوپلینگ بین کانال‌های سمت و فراز لحاظ شده است. برای این منظور، مبتنی بر ساختار کنترل آبشاری، یک کنترلر سه‌حلقه‌ای طراحی شده است که در حلقه داخلی و میانی آن از روش وارون دینامیک و در حلقه خارجی آن، ضمن لحاظ نمودن تاثیر فشار دینامیکی در طراحی کنترلر، از کنترل تطبیقی مدل مرجع استفاده شده است. در حلقه هدایت از روش ناوبری تناسبی بهره گرفته شده و عملکرد سیستم هدایت و کنترل یکپارچه، در شرایط با وجود عدم قطعیت و بدون عدم قطعیت در ضرایب آیرودینامیکی از طریق شبیه‌سازی آماری مونت‌کارلو اعتبارسنجی شده است. عملکرد الگوریتم پیشنهادی، با ساختار کنترلی آبشاری که در حلقه خارجی کنترلر کلاسیک PID دارد، انجام شده و نتایج آن ارائه گردیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Guidance and control of a dual-spin projectile using dynamic inversion method and MRAC-PID controller in cascade structure

نویسندگان [English]

  • Mohamad Reza Rajabi 1
  • Jalal Karimi 2
  • Seyed Hossein 2
1 Ph.D Student, Faculty of Aerospace, Malek Ashtar University of Technology, Iran.
2 Associate Professor,, Faculty of Aerospace, Malek Ashtar University of Technology, Iran.
چکیده [English]

In current study, an integrated guidance and control system is assessed for a projectile having dual spin motion in the cascade control structure. In this way, a nonlinear seven degrees of freedom model is used and coupling effects of pitch and yaw channels is taken into consideration. Based on cascaded control structure, a three-loops controller is designed, which in inner and middle loops the dynamic inversion method is used, and in the outer loop, an adaptive model based on PID controller is designed. The dynamic pressure contribution in acceleration command is also taken into account. The performance of the designed guidance and control system is assessed in presence of uncertainties via Monte Carlo statistical simulations. The results of suggested algorithm are compared with that of a cascade control having a classic PID controller in its outer loop. The results show the superior performance of the proposed algorithm in achieving the target and control effort.

کلیدواژه‌ها [English]

  • Dual-spin projectile
  • integrated guidance and control
  • cascade control structure
  • dynamic inversion method
  • Adaptive model reference control
[1] S. Jiang, F. Tian, and S. Sun, “Integrated Guidance and Control Design of Rolling-Guided Projectile Based on Adaptive Fuzzy Control with Multiple Constraints,” Mathematical Problems in Engineering, vol. 2019.
[2] F. Fresconi, G. Cooper, I. Celmins, J. DeSpirito, and M. Costello, “Flight mechanics of a novel guided spin-stabilized projectile concept,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 226, no. 3, pp. 327-340, 2011.
[3] M. Gross, M. Costello, and F. Fresconi, "Impact Point Model Predictive Control of a Spin-Stabilized Projectile with Instability Protection," AIAA Atmospheric Flight Mechanics (AFM) Conference, Guidance, Navigation, and Control and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2013.
[4] G. Frost, and M. Costello, "Stability and Control of a Projectile with an Internal Rotating Disk," AIAA Atmospheric Flight Mechanics Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2003.
[5] G. Frost, and M. Costello, “Linear theory of a rotating internal part projectile configuration in atmospheric flight,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 5, pp. 898-906, 2004.
[6] J. Rogers, and M. Costello, “A variable stability projectile using an internal moving mass,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 223, no. 7, pp. 927-938, 2009.
[7] J. Norris, A. Hameed, J. Economou, and S. Parker, “A review of dual-spin projectile stability,” Defence Technology, vol. 16, pp. 1-9, 2020.
[8] S. Theodoulis, and P. Wernert, "Flight Control for a Class of 155 mm Spin-stabilized Projectiles with Course Correction Fuse (CCF)," AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2011.
[9] H. Lee, C. H. Lee, and B. E. Jun, "Autopilot design for dual-spin projectile based on PI and feedback linearization control." pp. 2084-2088, 2014.
[10] P. Wernert, S. Theodoulis, and Y. Morel, "Flight Dynamics Properties of 155 mm Spin-Stabilized Projectiles Analyzed in Different Body Frames," AIAA Atmospheric Flight Mechanics Conference, Guidance, Navigation, and Control and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2010.
[11] D. Zhu, S. Tang, J. Guo, and R. Chen, “Flight stability of a dual-spin projectile with canards ” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 4, pp. 703-716 2015.
[12] F. Sève, S. Theodoulis, P. Wernert, M. Zasadzinski, and M. Boutayeb, “Flight Dynamics Modeling of Dual-Spin Guided Projectiles,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 4, pp. 1625-1641, 2017.
[13] F.-K. Yeh, J.-J. Huang, and C.-W. Huang, "Integrated design of ballistic missile guidance and autopilot using adaptive sliding control with 5 DOF inputs." pp. 639-644, 2011.
[14] J.-k. Lee, B.-H. Suh, and K.-i. Abe, "Model reference adaptive control of nonlinear system using feedback linearization." pp. 1571-1576, 1995.
[15] L. H. Torres, L. Schnitman, C. Junior, and J. F. de Souza, “Feedback linearization and model reference adaptive control of a magnetic levitation system,” Studies in Informatics and Control, vol. 21, no. 1, pp. 67-74, 2012.
[16] C.-H. Lee, M.-G. Seo, M.-J. Tahk, J.-I. Lee, and B.-E. Jun, “Missile acceleration controller design using pi and time-delay adaptive feedback linearization methodology,” arXiv preprint arXiv:1209.0864, 2012.
[17] A. Abaspour, M. Sadeghi, and S. H. Sadati, "Using fuzzy logic in dynamic inversion flight controller with considering uncertainties." pp. 1-6.
[18] M. Karlsson, “Non-linear dynamic inversion,”  Master’s thesis, 2002.
[19] M. Tahk, M. M. Briggs, and P. Menon, "Applications of plant inversion via state feedback to missile autopilot design." pp. 730-735, 1998.
[20] A. A. Godbole, and S. Talole, "Robust Feedback Linearization approach to pitch autopilot design." pp. 4667-4673, 2012.
[21] P. Zarchan, Tactical and strategic missile guidance: American Institute of Aeronautics and Astronautics, Inc., 2012.
[22] H. Mansor, S. Mohd-Noor, T. Gunawan, S. Khan, N. Othman, N. Tazali, and R. Islam, “Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter,” World Academy of Science, Engineering and Technology, International Science Index, Mechanical and Mechatronics Engineering, vol. 1, no. 1, pp. 501, 2015.
[23] T. Chamsai, P. Jirawattana, and T. Radpukdee, “Robust adaptive PID controller for a class of uncertain nonlinear systems: an application for speed tracking control of an SI engine,” Mathematical Problems in Engineering, vol. 2015.
[24] K. J. Åström, and T. Hägglund, “Automatic tuning of simple regulators with specifications on phase and amplitude margins,” Automatica, vol. 20, no. 5, pp. 645-651, 1984.
[25] A. Visioli, Practical PID control: Springer Science & Business Media, 2006.
[26] S. Theodoulis, V. Gassmann, P. Wernert, L. Dritsas, I. Kitsios, and A. Tzes, “Guidance and Control Design for a Class of Spin-Stabilized Fin-Controlled Projectiles,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 2, pp. 517-531, 2013.
[27] P. H. Morrison, and D. S. Amberntson, “Guidance and control of a cannon-launched guided projectile,” Journal of Spacecraft and Rockets, vol. 14, no. 6, pp. 328-334, 1977.
[28] G. A. Korn, Advanced Dynamic-System Simulation: Model Replication and Monte Carlo Studies: John Wiley & Sons, 2013.