بررسی ارتعاشات آکوستیکی استوانه های دو لایه جدارضخیم با وجود لایه میانی سیال قابل تراکم با استفاده از تئوری سه بعدی الاستیسیته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی کارشناسی ارشد مهندسی فناوری ماهواره / دانشکده فناوری های نوین، دانشگاه علم و صنعت ایران، تهران، ایران

3 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

4 دانشجوی کارشناسی ارشد مهندسی هوافضا / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

ساختارهای دوجداره کاربرد فراوانی در صنایع مختلفی چون هوافضا، دریایی و خودروسازی دارند. بنابراین در این مقاله به بررسی پدیده‌ی انتقال صوت در این سازه‌ها پرداخته می‌شود. به دلیل تاثیرگذاری پارامترهای چرخش و برش با افزایش ضخامت پوسته استوانه‌ای، از روش تئوری سه‌بعدی الاستیسیته برپایه نیوتنی استفاده می‌شود. برای حل معادله حرکت استوانه، فرض می‌شود که میدان جابجایی مجموع گرادیان یک میدان پتانسیل اسکالر و کرل یک میدان پتانسیل برداری است. در نتیجه معادله حرکت پوسته به دو معادله موج مجزا تبدیل می‌شود که با حل آن‌ها میدان جابجایی بدست می‌آید. برای اطمینان از معادلات بدست آمده، نتایج حاضر با نتایج دیگر محققان در این زمینه که با تئوری‌های دیگر چون کلاسیک حاصل شده اند، مقایسه می‌شود. در پایان تاثیر پارامترهای مختلفی چون خصوصیات و ضخامت لایه سیال، عددماخ و جنس استوانه‌ها مورد بررسی قرار می‌گیرد. نتایج نشان می‌دهد که در سازه‌های دوجداره با لایه میانی سیال، مقاومت صوتی (حاصلضرب سرعت صوت در چگالی ) سیال عامل اصلی و تاثیرگذار در کنترل صوت می‌باشد. هر سیالی که از مقاومت صوتی بیشتری برخوردار است در کنترل صوت بهتر رفتار می‌کند و افت انتقال صوت را بهبود می‌بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on the vibroacoustic response of compressible fluid-filled thick-walled cylinders using the three-dimensional theory of elasticity

نویسندگان [English]

  • Ali Tarkashvand 1
  • Mohamad Bolhasani 2
  • Kamran Daneshjou 3
  • Majid Ghaderi 4
  • Bijan Mohammadi 3
1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Satellite technologies .School of advanced technologies. Iran University of Science and Technology
3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
4 Aerospace engineering, school of mechanical engineering, Iran university of science and technology, Tehran, Iran
چکیده [English]

Double-walled structures are widely used in various industries such as aerospace, marine, and automotive. Therefore, in this paper, the sound transmission in these structures is investigated. Due to the influence of rotation and shear parameters by increasing the thickness of the cylindrical shell, the Newton-based three-dimensional theory of elasticity is used. In order to solve the governing equation of motion for a cylinder, it is assumed that the displacement field is the sum of the gradients of a scalar potential field and the curl of a vector potential field. As a result, the shell motion equation becomes two separate wave equations, which solve the displacement field. To confirm the obtained equations, the present results are compared with the results of other researchers in this field that have been obtained with other theories such as classical shell theory. Finally, the effect of various parameters such as properties and thickness of the fluid layer, Mach number, and material of the cylinders are investigated. The results show that in double-walled structures with the air gap, the acoustic impedance (the speed of sound multiplied by density) of the fluid is the main and effective factor in sound control. Any fluid with more Acoustic impedance behaves better in sound control and improves sound transmission loss.

کلیدواژه‌ها [English]

  • Double-walled structures
  • Air gap
  • Three-dimensional theory of elasticity
  • Sound transmission loss
[1] London A. Transmission of reverberant sound through double walls. J Acoust Soc Am 1950;22:270–9.
[2] White PH, Powell A. Transmission of random sound and vibration through a rectangular double wall. J Acoust Soc Am 1966;40:821–32.
[3] Mulholland KA, Parbrook HD, Cummings A. The transmission loss of double panels. J Sound Vib 1967;6:324–34.
[4] Ford RD, Lord P, Williams PC. The influence of absorbent linings on the transmission loss of double-leaf partitions. J Sound Vib 1967;5:22–8.
[5] Grosveld FW, Coats TJ, Lester HC, Silcox RJ. A numerical study of active structural acoustic control in a stiffened, double wall cylinder. Noise Con 1994 Proc. 1994 Natl. Conf. Noise Control Eng., 1994, p. 403–8.
[6] Lee J-H, Kim J. Analysis and measurement of sound transmission through a double-walled cylindrical shell. J Sound Vib 2002;251:631–49.
[7] Iwashige H. A practical method of estimating sound transmission loss of double walls: a proposal and its application to the popular case of light panels and air gap 1981.
[8] Xin FX, Lu TJ, Chen CQ. External mean flow influence on noise transmission through double-leaf aeroelastic plates. AIAA J 2009;47:1939–51.
[9] Zhou J, Bhaskar A, Zhang X. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow. J Sound Vib 2013;332:3724–34.
[10] Liu Y, Sebastian A. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel. J Sound Vib 2015;344:399–415.
[11] Tang Y, Robinson J, Silcox R. Sound transmission through a cylindrical sandwich shell with honeycomb core. 34th Aerosp. Sci. Meet. Exhib., 1996, p. 877.
[12] Tang YY, Silcox RJ, Robinson JH. Sound transmission through two concentric cylindrical sandwich shells 1996.
[13] Ghinet S, Atalla N, Osman H. Diffuse field transmission into infinite sandwich composite and laminate composite cylinders. J Sound Vib 2006;289:745–78.
[14] Daneshjou K, Ramezani H, Talebitooti R. Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials. Appl Math Mech 2011;32:701–18.
[15] Zhou J, Bhaskar A, Zhang X. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material. J Sound Vib 2014;333:1972–90.
[16] Zhao X, Zhang B, Li Y. Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment. J Vib Control 2017;23:673–92.
[17] He C, Liu Y, Sebastian A. Effects of external and gap mean flows on sound transmission through a double-wall cylindrical shell lined with poroelastic materials. Proc. 22nd Int. Congr. Sound Vib., 2015, p. 64.
[18] Liu Y, He C, On sound transmission through double-walled cylindrical shells lined with poroelastic material: comparison with Zhous results and further effect of external mean flow. J Sound Vib 2015: 358:192-8.
[19] Liu Y, He C. Analytical modelling of acoustic transmission across double-wall sandwich shells: Effect of an air gap flow. Compos Struct 2016;136:149–61.
[20] Liu Y, He C. Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow. Compos Struct 2016;135:383–96.
[21] Daneshjou K, Talebitooti R, Tarkashvand A. Analysis of sound transmission loss through thick-walled cylindrical shell using three-dimensional elasticity theory. Int J Mech Sci 2016;106:286–96.
[22] Tarkashvand, A., K. Daneshjou, and A. Golmohammadi. FG and viscoelastic model combination for vibroacoustic modeling of sandwich structures made of open and closed cell foam materials. Composite Structures 259 (2021): 113438.
[23]‎ Golzari, M. and Jafari, A.A., 2018. Sound transmission loss through triple-walled cylindrical shells with porous layers. The Journal of the Acoustical Society of America, 143(6), pp.3529-3544.
[24]‎ Valvano, S., Alaimo, A. and Orlando, C., 2019. Sound transmission analysis of viscoelastic composite multilayered shells structures. Aerospace, 6(6), p.69.
[25] Valvano, S., Alaimo, A. and Orlando, C., 2020. Analytical analysis of sound transmission in passive damped multilayered shells. Composite Structures, 253, p.112742.
[26] Wang, X.Z., Chen, L., Li, N., Xia, Y. and Xiong, Y.P., 2020. An Experimental and Modeling Study on Vibro-Acoustic Response of Double-Walled Steel Cylindrical Shells. International Journal of Steel Structures, 20(4), pp.1081-1099.
[27] Sadd MH. Elasticity: theory, applications, and numerics. Academic Press; 2009.
[28] Hamidzadeh HR, Jazar RN. Vibrations of thick cylindrical structures. Springer; 2010.
[29] Koval LR. On sound transmission into a thin cylindrical shell under “flight conditions.” J Sound Vib 1976;48:265–75.
[30]   Sgard, F., Atalla, N., & Nicolas, J. (1994).   Coupled       FEM-BEM approach for mean flow effects on vibro-   acoustic behavior of planar structures. AIAA journal, 32(12), 2351-2358.