استخراج فرکانس های طبیعی و مودهای ارتعاشی یک نمونه سامانه آزمایشگر سورتمه تک ریل دارای میراگر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی مکانیک / دانشگاه جامع امام حسین (ع)

2 عضو هیات علمی / دانشگاه جامع امام حسین (ع)

چکیده

در این مقاله به بررسی ارتعاشات وارد بر یک نمونه سامانه آزمایشگر سورتمه تک ریل دارای میراگر پرداخته می‌شود. ابتدا با استخراج معادلات ارتعاشی حاکم بر مسئله، اقدام به کدنویسی در نرم‌افزار متلب شده و با رسم نمودار FFT، فرکانس‌های طبیعی سیستم به دست آورده می‌شوند. فرکانس اول و دوم سیستم به ترتیب مربوط به جابه‌جایی پیچشی و جابه‌جایی عرضی سورتمه می‌باشند. باتوجه‌به سازه‌ای بودن میرایی سامانه سورتمه، جهت استخراج مقادیر سفتی معادل و میرایی معادل، از آزمون تجربی به‌وسیله دستگاه تست دینامیک هارمونیک استفاده می‌شود. سپس با شبیه‌سازی مدل سورتمه در نرم‌افزار آباکوس، آنالیز مودال صورت گرفته و فرکانس‌های طبیعی و شکل مودها استخراج می‌گردند. درنهایت با ساخت مدل طراحی شده سورتمه و انجام آنالیز مودال تجربی، فرکانس‌های طبیعی سیستم با دو روش قبل مورد مقایسه قرار گرفته و با خطای کمتر از 9 درصد مورد تأیید قرار می‌گیرد.
واژگان کلیدی: سامانه آزمایشگر سورتمه، فرکانس طبیعی، آنالیز مودال، سفتی معادل، میرایی معادل.

کلیدواژه‌ها


عنوان مقاله [English]

Extraction of natural frequencies and vibration modes of a sample of single-rail sled tester system with dampers

نویسندگان [English]

  • Mohammad Reza Najafi 1
  • saeed Mahjoub Moghadas 2
1 IHU university
2 IHU university
چکیده [English]

In this paper, the vibrations on the sample of a single-rail sled tester system with dampers are investigated. First, by extracting the vibration equations governing the problem coded in MATLAB software and by drawing the FFT diagram, the natural frequencies of the system are obtained. The first and second frequencies of the system are related to torsional displacement and transverse sled displacement, respectively. Due to the structural damping of the sled system, to extract the equivalent stiffness and equivalent damping values, the experimental test is used by the harmonic dynamic test device. Then, by simulating the sled model in ABAQUS software, modal analysis is performed and natural frequencies and mode shapes are extracted. Finally, by constructing a designed sled model and performing experimental modal analysis, the natural frequencies of the system are compared with the previous two methods and confirmed with an error of less than 9%.

Keywords

Sled tester system, natural frequency, modal analysis, equivalent stiffness, equivalent damping.

کلیدواژه‌ها [English]

  • Sled tester system
  • natural frequency
  • modal analysis
  • equivalent stiffness
  • equivalent damping
[1] Evaluation of Flow and Failure Properties of Treated 4130 Steel | SpringerLink, (n.d.). https://link.springer.com/article/10.1007/s40870-016-0059-1/figures/1 (accessed November 21, 2021).
[2] A. Gragossian, D.F. Pierrottet, J. Estes, B.W. Barnes, F. Amzajerdian, G.D. Hines, Navigation Doppler Lidar performance analysis at high speed and long range, AIAA Scitech 2020 Forum. 1 PartF (2020) 1–6. https://doi.org/10.2514/6.2020-0369
[3] H.J. McSpadden, R.R. Higgins, The history of hurricane mesa test facility, 40th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. (2004).
[4] H. Gurol, D. Ketchen, L. Holland, D. Minto, M. Hooser, N. Bosmajian, Status of the Holloman high speed maglev test track (HHSMTT), AIAA Aviat. 2014 - 30th AIAA Aerodyn. Meas. Technol. Gr. Test. Conf. (2014) 1–15. https://doi.org/10.2514/6.2014-2655.
[5] M.B. Meacham, A. Kennett, D.J. Townsend, B. Marti, Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator, AIAA Aerodyn. Decelerator Syst. Conf. 2013. 122 (2013) 1–13. https://doi.org/10.2514/6.2013-1351.
[6] M. Itoh, M. Katayama, R. Rainsberger, Computer simulation of an F-4 Phantom crashing into a reinforced concrete wall, WIT Trans. Modelling Simul. 40 (2005).
[7] D. NAKATA, A. KOZU, J. YAJIMA, K. NISHINE, K. HIGASHINO, N. TANATSUGU, Predicted and Experimented Acceleration Profile of the Rocket Sled, Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan. 10 (2012) 1- 5. https://doi.org/10.2322/tastj.10.ta_1.
[8] M.B. Meacham, A. Kennett, D.J. Townsend, B. Marti, Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator, AIAA Aerodyn. Decelerator Syst. Conf. 2013. 122 (2013) 1–13. https://doi.org/10.2514/6.2013-1351.
[9] D.W. Minto, AIAA-2002-3034 the Holloman High Speed Test Track Hypersonic Upgrade Program Status, Aerodyn. Meas. Technol. Gr. Test. Conf. (2002) 24–26.
[10] M.B. Meacham, J.C. Gallon, M.R. Johnson, D.B. Natzic, N. Thompson, D. Aguilar, B. Marti, E. Hennings, T. Rivellini, Rocket sled strength testing of large, supersonic parachutes, Aerodyn. Decelerator Syst. Technol. Conf. (2015) 1–28. https://doi.org/10.2514/6.2015-2163.
[11] C.D. Morin, K.L. Sparks, Developing a high altitude simulating, dynamic, ground test capability at the holloman afb high speed test track, USAF Dev. Test Eval. Summit. (2004) 1–9.
[12] S.C. Praharaj, R.P. Roger, Aerodynamic computations of integrated missile-on-sled vehicles, 34th Aerosp. Sci. Meet. Exhib. (1996). https://doi.org/10.2514/6.1996-290.
[13] G. Andres Garzon, J.R. Matisheck, Supersonic testing of natural laminar flow on sharp leading edge airfoils. Recent experiments by Aerion Corporation, 42nd AIAA Fluid Dyn. Conf. Exhib. 2012. (2012) 1–10. https://doi.org/10.2514/6.2012-3258.
[14] A. DeLeon, A.N. Palazotto, Shock Wave Investigation of High Speed Asperity Collision with Finite Element Modeling, (2020) 1–20. https://doi.org/10.2514/6.2020-0316.
[15] Z. Dou, S. Sheng, Application of Metal Rubber Technology, Aircr. Des. 30 (2010) 77–80.
[16] D.C. Tong, Mechanical simulation of rocket sled test damping system, Nav. Electron. Eng. (2012) 87–89.
[17] N. Bosmajian, D. Minto, L. Holland, Status of the magnetic levitation upgrade to the Holloman High Speed Test Track, in: 21st Aerodyn. Meas. Technol. Gr. Test. Conf., 2000: p. 2289.
[18] M. Hooser, Soft sled – The low vibration sled test capability at the holloman high speed test track, 2018 Aerodyn. Meas. Technol. Gr. Test. Conf. (2018) 1–12. https://doi.org/10.2514/6.2018-3872.
[19] J.H. Zhang, S.S. Jiang, Definition of boundary conditions and dynamic analysis of rocket sled and turntable, Appl. Mech. Mater. 52–54 (2011) 261–266. https://doi.org/10.4028/www.scientific.net/AMM.52-54.261.
[20] M. Hooser, C. Hooser, 103X-A1 Vibration Analysis Report, 2016.
[21] M. Hooser, C. Hooser, Soft Sled Design Evaluation Report, 2016.
[22] J. Xiao, W. Zhang, Q. Xue, W. Gao, L. Zhang, Modal Analysis for Single Track Sled, (2018).
[23] J. Zhang, Dynamic coupling analysis of rocket propelled sled using multibody-finite element method, 18 (2014) 25–30.
[24] نجفی محمدرضا، محجوب مقدس سعید، مرادی مجتبی، تعیین میراگر پیچشی مناسب جهت کاهش دامنه ارتعاشات موتور هواپیماهای فوق سبک،نشریه پژوهشی مهندسی مکانیک ایران،1399، 10.30506/IJMEP.2021.141449.1746
[25] C. Hooser, M. Hooser, Soft Sled Evaluation Design Report, 2016. https://www.mhiglobal.com/products/expand/ram_jet_engine_test_facility_supply_result_01.html.
[26] S. Chen, Y. He, Z. Li, Analysis of the Rocket Sled Track Irregularity in Time and Frequency Domains, in: CICTP 2014 Safe, Smart, Sustain. Multimodal Transp. Syst., 2014: pp. 111–118.
[27] محجوب مقدس سعید، کتاب ارتعاشات مکانیکی، ایران، تهران، 1387.
[28] S.A. Al-Gahtany, Mechanical properties of styrene-butadiene rubber-/ethylene propylene diene monomer rubber-based conductive blends, J. Elastomers Plast. 45 (2013) 367–389. https://doi.org/10.1177/0095244312454035.