ارتعاشات آکوستیک پوسته استوانه‌ای FML ‌با استفاده از تئوری برشی مرتبه اول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک / دانشگاه علم و صنعت ایران، تهران

2 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

چکیده

در این مقاله تلاش شده است با استفاده از روشی تحلیلی، افت انتقال صوت در پوسته‌های استوانه‌ای FML بررسی گردد. برای این منظور پوسته استوانه‌ای بلند از جنس FML، در معرض یک موج صوتی صفحه‌ای مایل قرار گرفته که در نتیجه آن انعکاس و انتقال موج ایجاد گشته است. همچنین پوسته در معرض یک جریان یکنواخت متحرک در سیال خارجی و داخلی قرار گرفته است. با توجه به نقش مؤثر روابط برشی در بررسی افت انتقال صوت بخصوص در فرکانس‌های بالا، برای یافتن معادلات ارتعاشی پوسته از تئوری تغییر شکل‌ برشی مرتبه اول (FSDT ) استفاده می‌شود. معادلات حرکت پوسته از طریق اصل دالامبر به‌دست‌آمده و با اعمال فشارهای آکوستیکی و شرایط مرزی و استفاده از توابع سری‌های بینهایت که با استفاده از الگوریتمی خاص همگرا می‌شوند، معادلات ارتعاشی پوسته و روابط آکوستیک به‌طور هم‌زمان حل می‌گردند. مقادیر افت انتقال صوت حاصل از حل عددی با نتایج سایر محققین مقایسه می‌گردد. در این مقاله نشان داده می‌شود که استفاده از استوانه‌ی FML به جای استوانه‌ی کامپوزیتی، فرکانس انطباقی را 18 درصد افزایش می‌دهد. همچنین در ناحیه جرم کنترل افت انتقال صوت نیز می‌تواند تا 9 درصد افزایش یابد. مشاهده می‌گردد که با کسر حجمی ثابت فلز، قرار دادن لایه‌های آلومینیومی در فواصل دورتر از تار خنثی فرکانس رینگ و انطباقی به ترتیب، 4/11 و 7/18 درصد تغییر می‌کنند. همچنین نتایج نشان می‌دهند که با افزایش 20 درصدی کسر حجمی فلز، در یک فرکانس مشخص می‌توان تا 28 درصد افت انتقال صوت را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Vibro-acoustic analysis of fiber metal laminate cylindrical shell using first order shear deformation theory

نویسندگان [English]

  • mohammad sadegh fayez 1
  • Ali Tarkashvand 1
  • Kamran Daneshjou 2
1 mechanical engineering department,, Iran university of science and technology, Tehran , Iran
2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this research, using analytical method, sound transmission loss in fiber metal laminate (FML) composite cylinder is studied. For this purpose, an infinitely long cylindrical shell composed of FML is subjected to an oblique plane wave. considering the effects of shear forces in the sound transmission loss, specifically at the higher frequencies, the FSDT theory is used to solve the governing equation of the motion. The equation of motion of the shell are obtained by D'Alembert principle. The equations are solved simultaneously using acoustic pressures, boundary conditions and infinite series that converged with a special algorithm, shell equations and acoustic relations. The values of sound transmission loss from numerical solution are validated with other researchers. This study shows that using FML cylinder instead of composite cylinder, the coincidence frequency increases 18 percent. Also in mass control region transmission loss increases 9 percent. It is demonstrated that with constant volume fraction of metal, locating aluminum lamina in farther distance from neutral axis, ring and coincidence frequency changes 11.4 and 18.7 respectively. In addition, results indicate that by increasing of 20 percent of metal volume fraction (MVF), in a specified frequency, transmission loss can be increased 28 percent.

کلیدواژه‌ها [English]

  • Cylindrical shell
  • FML
  • first order shear deformation theory
  • sound transmission
[1] L. R. Koval,  On sound transmission into an orthotropic shell, Journal of Sound and Vibration, vol. 63, no. 1, pp. 51–59, 1979.
[2] C. R. Fuller and F. J. Fahy,  Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid, Journal of Sound and Vibration, vol. 81, no. 4, pp. 501-518, 1982.
[3] B. Laulagnet and J. L. Guyader,  Modal analysis of a shell’s acoustic radiation in light and heavy fluids, Journal of Sound and Vibration, vol. 131, no. 3, pp. 397-415, 1989.
[4] A. Blaise and C. Lesueur,  Acoustic transmission through a ‘3-d’ orthotropic multi-layered infinite cylindrical shell, part i: Formulation of the problem, Journal of Sound and Vibration, vol. 171, no. 5, pp. 651–664, 1994.
[5] J. H. Lee and J. Kim,  Analysis and measurement of sound transmission through a double-walled cylindrical shell, Journal of Sound and Vibration, vol. 251, no. 4, pp. 631–649, 2002.
[6] J.-H. H. Lee and J. Kim,  Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models, Applied Acoustics , vol. 64, no. 6, pp. 611–632, 2003.
[7] K. Daneshjou, A. Nouri, and R. Talebitooti,  Sound transmission through laminated composite cylindrical shells using analytical model, Archive of Applied Mechanics, vol. 77, no. 6, pp. 363–379, 2007.
[8] K. Daneshjou, A. Nouri, and R. Talebitooti,  Analytical model of sound transmission through laminated composite cylindrical shells considering transverse shear deformation, Applied mathematics and Mechanics (English Ed., vol. 29, no. 9, pp. 1165–1177, 2008.
[9] K. Daneshjou, A. Nouri, and R. Talebitooti,  Analytical model of sound transmission through orthotropic cylindrical shells with subsonic external flow, Aerospace Science and Technology, vol. 13, no. 1, pp. 18–26, 2009.
[10] S. M. Hasheminejad and M. Rajabi,  Acoustic scattering characteristics of a thick-walled orthotropic cylindrical shell at oblique incidence, Ultrasonics, vol. 47, no. 1–4, pp. 32–48, 2007.
[11] J. Zhou, A. Bhaskar, and X. Zhang,  Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation, Journal of Sound and Vibration, vol. 357, pp. 253–268, 2015.
[12] A. A. Jafari, M. Golzari and M. S. Jafari,  Sound transmission loss through triple-walled sandwich cylindrical shells in the presence of external flow, Modares Mechanical Engineering , vol. 17, no. 10, pp. 439–450, 2022.
[13] A. Tarkashvand, M. Bolhasani, K. Daneshjo, R. Talebitooti, Three-dimensional elasticity solution for vibro-acoustic behavior of cylinder in the presence of subsonic flow', Aerospace Knowledge and Technology Journal, vol. 9, no. 2, pp. 243–254, 2021; http://www.astjournal.ir/article_ 243325.html. (in Persianفارسی )
[14] K. Daneshjou, R. Talebitooti, and A. Tarkashvand,  An exact solution of three-dimensional elasticity for sound transmission loss through FG cylinder in presence of subsonic external flow, International Journal of Mechanical Sciences ,vol. 120, pp. 105–119, 2017.
[15] R. , T. Talebitooti and A. M. Choudari Khameneh, Sound transmission across double-walled orthotropic cylindrical shells under incidence wave with two various angles based on the three-dimensional elasticity theory, Modares Mechanical Engineering , vol. 16, no. 9, pp. 1–11, 2016.
[16] X. Wang, E. Xu, C. Jiang, and W. Wu,  Vibro-acoustic behavior of double-walled cylindrical shells with general boundary conditions, Ocean Engineering , vol. 192, 2019.
[17] K. Malekzadeh Fard . Present of Analytical Solution for Free Vibration of the Curved Thick Sandwich Beam with Flexible Core Using Higher Order Theory and the Dynamic Stiffness Method, Aerospace Knowledge and Technology Journal, vol. 3, no. 1, pp. 37-48, 2014; http:// www. astjournal.ir/article_11497.html.(in Persianفارسی )
[18] Y. Y. Tang, R. J. Silcox, J. H. Robinson, A. B. Head, and J. H. Robinson,  Sound transmission through two concentric cylindrical sandwich shells.
[19] S. M. R. Khalili, K. Malekzadeh, A. Davar, and P. Mahajan,  Dynamic response of pre-stressed fibre metal laminate (FML) circular cylindrical shells subjected to lateral pressure pulse loads, Composite Structures , vol. 92, no. 6, pp. 1308–1317, 2010.
[20] D. Banat, Z. Kolakowski, and R. J. Mania,  Investigations of fml profile buckling and post-buckling behaviour under axial compression, Thin-Walled Structures, vol. 107, pp. 335–344, 2016.
[21] A. R. Ghasemi, S. Kiani, and A. Tabatabaeian,  Buckling analysis of FML cylindrical shells under combined axial and torsional loading, Mechanics of Advanced Composite Structures, vol. 7, no. 2, pp. 263–270, 2020.
[22] A. R. Ghasemi and M. Mohandes,  Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory, Mechanics of Adanced Materials and Structures, vol. 27, no. 1, pp. 43–54, 2020.
[23] G. H. Payeganeh, F. Ashenai Ghasemi, and K. Malekzadeh,  Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact, Thin-Walled Strucures , vol. 48, no. 1, pp. 62–70, 2010.
[24] A. Nazari and A. A. Naderi, Free vibration analysis of designed FML circular cylinderical shell cylindrical shell based on optimum fiber
orientation, Modares Mechanical Engineering,  vol. 18, no. 7, pp. 108-118, 2018
[25] Y.-S. Lee and K.-D. Lee,  On the dynamic response of laminated circular cylindrical shells under impulse loads, Computers and Structures, vol. 63, no. 1, pp. 149–157, 1997.
[26] R. Azarafza, A. Davar, M. S. Fayez, and J. E. Jam,  Free vibration of grid-stiffened composite cylindrical shell reinforced with carbon nanotubes, Mechanics of Composite Materials, vol. 56, no. 4, pp. 505–522, 2020.
[27] A. Davar, R. Azarafza, M. S. Fayez, S. Fallahi, and J. E. Jam,  Dynamic Response of a Grid-Stiffened Composite Cylindrical Shell Reinforced with Carbon Nanotubes to a Radial Impulse Load, Mechanics of Composite Materials , vol. 57, no. 2, pp. 181–204, 2021.
[28] L. R. Koval,  On sound transmission into a thin cylindrical shell under   flight conditions, Journal of Sound and Vibration, vol. 48, pp. 265–275,   1976.