بررسی تأثیر قطر پاشش بر مشخصات حوزه جریان پاشش متقاطع در جریان هوای عبوری فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

2 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

چکیده

با توجه به اینکه سرعت جریان هوا در محفظه احتراق موتورهای اسکرمجت‌ مافوق‌صوت است، لذا زمان کافی برای آمیختگی مناسب سوخت و هوا در این سرعت‌های بالا وجود ندارد، و بررسی فرآیند آمیختگی سوخت و هوا در این شرایط یکی از موضوعات مهم در طراحی موتورهای اسکرمجت است. یکی از روش‌های پر کاربرد پاشش سوخت در جریان‌های مافوق صوت محفظه‌های احتراق موتورهای اسکرمجت، روش پاشش متقاطع سوخت در جریان عبوری مافوق صوت است. از آنجاییکه در اینگونه جریان‌ها، سرعت هوای عبوری بسیار زیاد است، دستیابی به آمیختگی مناسب جهت احتراق از مسائل چالش بر انگیز می باشد. در کار حاضر با استفاده از حل معادلات سه-بعدی ناویر-استوکس رینولدز-متوسط به همراه مدل آشفتگی k-ω sst و معادله حالت گاز ایده آل، حوزه جریان پاشش متقاطع در جریان عبوری مافوق صوت به صورت عددی شبیه‌سازی شده است و تأثیر قطر پاشش بر ویژگی‌های آمیختگی از قبیل عمق نفوذ سوخت، راندمان آمیختگی، نسبت مساحت آمیختگی مؤثر و تلفات فشار سکون بررسی شده است. سپس نتایج شبیه‌سازی‌های جریان واکنش‌پذیر نیز ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the effect of injection diameter on the characteristics of the flowfield of transverse injection into supersonic air crossflow

نویسندگان [English]

  • Mostafa Zahedzadeh 1
  • Fathollah Ommi 2
1 Tarbiat Modares University
2 Professor, Mechanical Engineering Department, Tarbiat Modares University
چکیده [English]

Due to the fact that the velocity of air flow in the combustion chamber of scramjets is supersonic, so there is not enough time for proper mixing of fuel and air at these high speeds, and studying the process of mixing of fuel and air in this situation is one of the important issues for scramjet engine design. One of the most widely used methods of fuel injection in supersonic flows of scramjet engine combustion chambers is the method of transverse injection into supersonic air crossflow. Since the velocity of the passing air is very high in such streams, it is challenging to achieve a suitable mixture for combustion. In the present work, by solving the three-dimensional Reynolds-Averaged-Navier-Stokes equations with the k-ω sst turbulence model and the ideal gas state equation, the transverse injection domain in the supersonic flow is numerically simulated and the effect of injection diameter is investigated based on the mixing properties such as fuel penetration depth, mixing efficiency, effective mixing area ratio and stagnation pressure losses. After that, results of reactive flow are presented.

کلیدواژه‌ها [English]

  • Transverse injection
  • Supersonic flow
  • Mixing efficiency
  • Injection diameter
[1] A. Ferri, “Review of Scramjet Propulsion Technology,” Journal of Aircraft, Vol. 5, No. 1, pp. 3-10, 1968.
[2] E. Curran, S. Murthy, Scramjet propulsion, Published by the American Institute of Aeronautics and Astronautics, Inc. AIAA, 2001.
[3] M. Zakeri, j. pirkandi, A. Taleghani, “Scramjets and Their Role in the Future of Aerospace Propulsion Systems,” Journal of Technology in Aerospace Engineering, Vol. 2, No. 2, pp. 1-10, 2018. (in Persian)
[4] M. Zahedzadeh, F. Ommi, “Numerical Study of Supersonic Gas Flow in Single Expansion Ramp Nozzle,” Journal of Mechanical Engineering, Vol. 49, No. 1 (86), pp. 137-145, 2019. (in Persian)
[5] M. B. Colket III, L. J. Spadaccini, “Scramjet Fuels Autoignition Study,” Journal of propulsion and power, Vol. 17, No. 2, pp. 315-323, 2001.
[6] S. Valger, N. Fedorova, “Study of Coherent Structures Effect on Mixing Characteristics of Jet Injection into Supersonic Crossflow,” In AIP Conference Proceedings, vol. 2351, no. 1, p. 040019.1-8 AIP Publishing LLC, 2021
[7] D. Riggins, C. McClinton, R. Rogers, R. Bittner, “Investigation of Scramjet Injection Strategies for High Mach Number Flows,” Journal of Propulsion and Power, Vol. 11, No. 3, pp. 409-418, 1995.
[8] W. Huang, “Transverse Jet in Supersonic Crossflows,” Aerospace Science and Technology, Vol. 50, pp. 183-195, 2016.
[9] G.-X. Li, M.-B. Sun, J.-F. Yu, C.-H. Liang, Y. Liu, G.-Y. Zhao, Y.-H. Huang, “Effect of Injection Mach Number on Penetration in a Supersonic Crossflow,” AIAA Journal, Vol. 58, No. 3, pp. 1216-1226, 2020.
[10] W. Huang, J. Liu, L. Jin, L. Yan, “Molecular Weight and Injector Configuration Effects on The Transverse Injection Flow Field Properties in Supersonic Flows,” Aerospace Science and Technology, Vol. 32, No. 1, pp. 94-102, 2014.
[11] N. J. Williams, T. M. Moeller, R. J. Thompson, “Numerical Simulations of High Frequency Transverse Pulsed Jet Injection into a Supersonic Crossflow,” Aerospace Science and Technology, Vol. 103, pp. 105908, 2020.
[12] Z. Cai, M. Sun, Z. Wang, X.-S. Bai, “Effect of Cavity Geometry on Fuel Transport and Mixing Processes in a Scramjet Combustor,” Aerospace Science and Technology, Vol. 80, pp. 309-314, 2018.
[13] Z. Zhang, S. F. McCreton, M. Awasthi, A. O. Wills, D. J. Moreau, C. J. Doolan, “The flow features of Transverse Jets In Supersonic Crossflow,” Aerospace Science and Technology, Vol. 118, pp. 107058, 2021.
[14] T. Fric, A. Roshko, “Vortical Structure in the Wake of a Transverse Jet,” Journal of Fluid Mechanics, Vol. 279, pp. 1-47, 1994.
[15] L. L. Yuan, R. L. Street, J. H. Ferziger, “Large-Eddy Simulations of a Round Jet in Crossflow,” Journal of Fluid Mechanics, Vol. 379, pp. 71-104, 1999.
[16] M. Zahedzadeh, F. Ommi, “Numerical Study of the Effect of Air Injection before Fuel Injection in Supersonic Air Crossflow,” Aerospace Knowledge and Technology Journal, Vol. 9, No. 1, pp. 185-196, 2020. (in Persian)
[17] W. Huang, Z. Wang, S. Luo, J. Liu, “Parametric Effects on the Combustion Flow Field of a Typical Strut-Based Scramjet Combustor,” Journal of Chinese science bulletin, Vol. 56, No. 35, pp. 3871-3877, 2011.
[18] Z. Zhong-hua Le Jia-ling, “Parallel Modeling of Three-Dimensional Scramjet Combustor and Comparisons with Experiment’s Results,” Journal of China Aerodynamics Research Development Center, 2002.
[19] A. Thakur, N. Thillai, A. Sinha, “Combustion Enhancement in Rearward Step Based Scramjet Combustor by Air Injection at Step Base,” Propulsion and Power Research, Vol. 10, No. 3, pp. 224-234, 2021.
[20] J. Pirkandi, M. Mahmoodi, “The Numerical Simulation and Analysis of a Prototype Scramjet (DLR) in
Reacting and Non-Reacting Conditions,Journal of Fuel and Combustion, Vol. 13, No. 3, pp. 45-62, 2020. (in Persian)
[21] J. Pirkandi, M. Mahmoodi, “Three-Dimensional Modeling of the Combustion Process of a Scramjet by
Considering Multi-Stage Reaction Mechanism,” Journal of Fuel and Combustion, Vol. 13, No. 4, pp. 1-25, 2020. (in Persian)
[22] M. Gamba, M. G. Mungal, Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow, Journal of Fluid Mechanics, Vol. 780, pp. 226-273, 2015.
[23] S. Dixit, Mathematical Modeling and Analysis of Different Type of Fuel Injector in Scramjet Engine Using CFD Simulation in Fluent, International Journal for Research in Applied Science and Engineering Technology, Vol. V, No. II, pp. 379-389, 2017.
[24] P. Nithish Reddy, K. Venkatasubbaiah, “Numerical Investigations on Development of Scramjet Combustor,” Journal of Aerospace Engineering, Vol. 28, No. 5, pp. 04014120, 2015.
[25] D. P. Mishra, K. V. Sridhar, “Numerical Study of Effect of Fuel Injection Angle on the Performance of a 2D Supersonic Cavity Combustor,” Journal of Aerospace Engineering, Vol. 25, No. 2, pp. 161-167, 2012.
[26] F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
[27] W. Huang, W.-d. Liu, S.-b. Li, Z.-x. Xia, J. Liu, Z.-g. Wang, “Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows,” Journal of Acta Astronautica, Vol. 73, pp. 1-9, 2012.
[28] W. Huang, J.-g. Tan, J. Liu, L. Yan, “Mixing Augmentation Induced by the Interaction Between the Oblique Shock Wave and a Sonic Hydrogen Jet in Supersonic Flows,” Acta Astronautica, Vol. 117, pp. 142-152, 2015.
[29] A. B. Freeborn, P. I. King, M. R. Gruber, “Swept-Leading-Edge Pylon Effects on a Scramjet Pylon-Cavity Flameholder Flowfield,” Journal of Propulsion and Power, Vol. 25, No. 3, pp. 571-582, 2009.
[30] E. Erdem, K. Kontis, “Numerical and Experimental Investigation of Transverse Injection Flows,” Shock Waves, Vol. 20, No. 2, pp. 103-118, 2010.
[31] M. Zahedzadeh, F. Ommi, “Numerical Study of Step Geometry Effects on Gaseous Sonic Transverse Injection in Supersonic Crossflow,” Journal of Modares Mechanical Engineering, Vol. 19, No. 4, pp. 1075-1084, 2019. (in Persian)
[32] Ansys, ANSYS FLUENT theory guide, 2011.
[33] M. Zahedzadeh, F. Ommi, Numerical Study of Staged Transverse Injection of Sonic Jets into Supersonic Crossflows behind a Step, Journal of Modeling in Engineering, Vol. 17, No. 56, pp. 281-291, 2019.
[34] H. Schlichting, K. Gersten, Boundary-Layer Theory: Springer Berlin Heidelberg, 2016.
[35] F. M. White, Text book on Fluid Mechanics, McGraw-Hill Book Company, 2011.
[36] J. McDaniel, D. Fletcher, R. Hartfield Jr, S. Hollo, Staged Transverse Injection Into Mach-2 Flow Behind a Rearward-Facing step: a 3-D Compressible Test Case for Hypersonic Combustor Code Validation, AIAA-5071, AIAA Third international aerospace planes conference, Orlando, FL, 1991.
[37] G. L. Brown, A. Roshko, “On Density Effects and Large Structure in Turbulent Mixing Layers,” Journal of Fluid Mechanics, Vol. 64, pp. 775, 1974.
[38] L. Lang-quan, H. Wei, Y. Li, “Mixing Augmentation Induced by a Vortex Generator Located Upstream of the Transverse Gaseous Jet in Supersonic Flows,” Aerospace Science and Technology, Vol. 68, pp. 77, 2017.
[39] J. Sislian, J. Schumacher, “Fuel/air mixing enhancement by cantilevered ramp injectors in hypersonic flows,” International Symposium on Air Breathing Engines, 14th, Florence, Italy. 1999.
[40] Z.-b. Du, W. Huang, L. Yan, M.-z. Dong, “Impacts of Jet Angle and Jet-To-Crossflow Pressure Ratio on the Mixing Augmentation Mechanism in a Shcramjet Engine,” Journal of Aerospace Science and Technology, Vol. 94, pp. 105385, 2019.
[41] R. J. Hartfield, S. D. Hollo, J. C. McDaniel, “Experimental Investigation of a Supersonic Swept Ramp Injector Using Laser-Induced Iodine Fluorescence,” Journal of Propulsion and Power, Vol. 10, No. 1, pp. 129-135, 1994.
[42] M. Zhao, Y. Bian, Q. Li, T. Ye, “Large eddy simulation of transverse single/double jet in supersonic crossflow,” Journal of Aerospace Science Technology, Vol. 89, pp. 31-45, 2019.