توسعة حل تحلیلی رفتار دینامیکی بال‌زن انعطاف‌پذیر تحت اثر نیروهای اینرسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

3 دانشجوی کارشناسی ارشد / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

چکیده

با توجه به عدم وجود حل بستة تحلیلی برای دینامیک سازة بال‌زن‌های انعطاف‌پذیر، در این مقاله، با اتخاذ رویکرد رویکرد مودال، به این مهم پرداخته شده است. به‌منظور لحاظ‌کردن آثار حرکت شتابدار بال‌زدن روی سازة بال، نیروهای اینرسی تحت تأثیر دینامیک سازوکار ایجاد حرکت بال‌زدن، به‌صورت تحلیلی محاسبه شده و به معادلات دیفرانسیلی دینامیک سازه، اعمال می‌گردند. در ادامه، معادلات با استفاده از شرایط اولیه به‌صورت تحلیلی حل شده و معادلات حاکم بر وضعیت حرکت بال، به‌صورت توابع زمانی به‌دست می‌آیند. با در دست داشتن معادلات حرکت صلب و الاستیک بال، اثر پارامترهای گوناگون سازه‌ای و حرکتی روی پاسخ‌های گذرا و پایا، به‌صورت تحلیلی ارزیابی می‌گردد. همچنین در یک مطالعة موردی، یک سناریوی پروازی بال‌زن شبیه‌سازی می‌شود و رفتار دینامیکی آن تحت یک حرکت بال‌زدن سینوسی مورد مطالعه قرار می‌گیرد. رویکرد اتخاذشده در بررسی تحلیلی رفتار دینامیکی سازه‌ پرنده‌های بال‌زن، دریچه‌ای جدید با استفاده از حل بستة تحلیلی به‌روی مطالعات این حوزه می‌گشاید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of analytical solution for dynamic behavior of elastic flapping wing under inertial loading

نویسندگان [English]

  • Hadi Zare 1
  • Seyed Hossein Pourtakdoust 2
  • Hasan Haddadpour 2
  • Arian Bighashdel 3
چکیده [English]

Structural dynamics (SD) behavior of an Elastic Flapping Wing (EFW) is analytically investigated for the first time. Due to importance of inertial forces and in order to seek analytical solution for EFW, they are the only forces considered in this study. The EFW governing equations are derived via a modal approach. A second order dynamic servo actuator is utilized to impose a sinusoidal motion on the EFW. The accelerated forcing effect of the servo on EFW is also analytically computed and augmented to the governing equations. The governing equations are next solved in a closed form. The EFW analytical solution allows for various analysis of its steady and transient response due to any changes in the forced motion and/or its structural parameters. Finally, as a case study, the EFW is modeled using elastic beam and shell elements in order to investigate its dynamic behavior while undergoing a prescribed sinusoidal motion. The proposed development paves the way for further analytical studies in the area of EFWs.

کلیدواژه‌ها [English]

  • analytical solution
  • structural dynamic
  • flapping wing
  • modal analysis

[1] B. Singh, I. Chopra, Dynamics of insect-based flapping wings: Loads validation, AIAA Paper, vol. 1663, p. 2006, 2006.

[2] C. P. Ellington, the Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 305, pp. 1-15, 1984.

[3] W. Shyy, M. Berg, D. Ljungqvist, Flapping and flexible wings for biological and micro air vehicles, Progress in aerospace sciences, vol. 35, pp. 455-505, 1999.

[4] R. J. Wootton, Functional morphology of insect wings, Annual review of entomology, vol. 37, pp. 113-140, 1992.

[5] M. Smith, The effects of flexibility on the aerodynamics of moth wings-Towards the development of flapping-wing technology, presented at the 33rd Aerospace Sciences Meeting and Exhibit, 1995.

[6] R. F. Larijani, J. D. DeLaurier, A nonlinear aeroelastic model for the study of flapping wing flight, Progress in Astronautics and Aeronautics, vol. 195, pp. 399-428, 2001.

[7] Q. Zhu, Numerical simulation of a flapping foil with chordwise or spanwise flexibility, AIAA journal, vol. 45, pp. 2448-2457, 2007.

[8] K. Isogai, Y. Harino, Optimum Aeroelastic Design of a Flapping Wing, Journal of Aircraft, vol. 44, pp. 2040-2048, 2007.

[9] B. Singh, I. Chopra, An aeroelastic analysis for the design of insect-based flapping wings, presented at the 48th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, 2007.

[10] A. Gogulapati, P. Friedmann, W. Shyy, Nonlinear Aeroelastic Effects in Flapping Wing Micro Air Vehicles, presented at the 49th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, 2008.

[11] S. P. Banerjee, M. Patil, Aeroelastic analysis of membrane wings, presented at the 49th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, 2008.

[12] D.-K. Kim, H. Han, A Dynamic Model of a Flexible Flapping Wing for Fluid-Structure Interaction Analysis, presented at the 15th International Congress on Sound and Vibration, 2008.

[13] H. Aono, C. Kang, C. E. Cesnik, W. Shyy, A numerical framework for isotropic and anisotropic flexible flapping wing aerodynamics and aeroelasticity, presented at the 28th AIAA Applied Aerodynamics Conference, 2010.

[14] W. Su, C. Cesnik, Nonlinear Aeroelastic Simulations of a Flapping Wing Micro Air Vehicle Using Two Unsteady Aerodynamic Formulations, presented at the 51st AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, 2010.

[15] T. Vanneste, J. Paquet, S. Grondel, E. Cattan, Aeroelastic simulation of flexible flapping wing based on structural FEM and quasi-steady aerodynamic model, in Proceedings of 28th Congress of the International Council of the Aeronautical Sciences, ICAS 2012, 2012.

[16] S. H. Pourtakdoust, S. K. Aliabadi, Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model, Scientia Iranica, vol. 19, pp. 472-482, 6// 2012.

[17] S. Nogar, A. Gogulapati, J. M. Jack, A. Serrani, Approximate Dynamics Modeling of Flexible Flapping Wing MAVs with Application to Control, presented at the AIAA Atmospheric Flight Mechanics Conference, 2014.

[18] H. Djojodihardjo, Analysis and Computational Study of The Aerodynamics, Aeroelasticity and Flight Dynamics of Flapping Wing Ornithopter Using Linear Approximation, in 54th AIAA Aerospace Sciences Meeting, ed: American Institute of Aeronautics and Astronautics, 2016.

[19] S. A. Combes, T. L. Daniel, Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta, Journal of Experimental Biology, vol. 206, pp. 2999-3006, 2003.

[20] A. Barut, M. Das, E. Madenci, Nonlinear deformations of flapping wings on a micro air vehicle, AIAA, vol. 1662, p. 2006, 2006.

[21] N. Wilson, N. Wereley, Experimental Investigation of Flapping Wing Performance in Hover, in 48th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, 2007.

[22] D. Yeo, E. M. Atkins, L. P. Bernal, W. Shyy, Experimental Characterization of Lift on a Rigid Flapping Wing, Journal of Aircraft, vol. 50, pp. 1806-1821, 2013.

[23] L. Meirovitch, Principles, techniques of vibrations, vol. 1: Prentice Hall, 1997.

[24] K. Ogata, Modern control engineering, 5th ed., 2010.