تعیین بردار سرعت یک جسم در حال حرکت به کمک داده‌های جی. پی. اس. با آنالیز و دسته‌بندی الگوریتم‌های مختلف مشتق‌گیری عددی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / گروه کنترل، دانشگاه شهید بهشتی، تهران

2 عضو هیات علمی / گروه کنترل، دانشکده برق، دانشگاه شهید بهشتی

چکیده

محاسبة نرخ تغییرات یا به‌عبارتی مشتق­گیری از سیگنال­های دیجیتال همواره از مهم‌ترین چالش‌های موجود در زمینة پردازش سیگنال­های دیجیتال بوده است. این در حالی است که در کاربردهای مختلف به ناچار باید به مشتق­گیری از سیگنال­های دیجیتال پرداخت. در بسیاری از کاربردها استفاده از روش­های مرسوم مشتق­گیری ناکارآمد است و منجر به افزایش شدید خطا و نویز تا حدود چند ده برابر می‌شوند. در این مقاله محاسبة سرعت از روی داده­های همراه با نویز و گسسته در متغیر حالتِ مکان با روش­های مختلف از لحاظ تئوری و عملی بررسی و مقایسه و در ادامه بهترین روش محاسبة نرخ تغییرات (مشتق‌گیری) برای کاربرد مذکور استخراج شده است. با بررسی‌های انجام‌شده ملاحظه می‌شود که روش فیلتر کالمن مناسب­ترین عملکرد را در کمینه‌کردن مجموع مربعات خطا برای کاربرد محاسبة مشتق از داده­های جی. پی. اس. دارد و به‌خوبی با فیلتر مناسب داده‌ها آثار نویز و خطا را از بین می­برد. استفاده از روش فیلتر کالمن دارای حالت گذرای مناسب نیست. این مشکل با اصلاح روش و به‌کارگیری فیلتر کالمن تطبیقی با وزن‌دهی مناسب به داده­های عملکرد حالت گذرا را نیز تا حد خوبی بهبود داده است. نتایج حاصل از اعمال الگوریتم­های مورد بحث روی داده­های واقعی جی. پی. اس. برای استخراج بردار سرعت لحظه­ای گزارش شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Moving object velocity vector determination using GPS data with analyze and classification of different numerical differentiator algorithms

نویسندگان [English]

  • Amir Poursadegh Sadat Mahaleh 1
  • Mahdi Pourgholi 2
  • Alireza Yazdizadeh 2
1 Graduated Student / Department of Electrical-Control Engineering, Shahid Beheshti University, Tehran
2 Assistant Professor / Department of Electrical-Control Engineering, Shahid Beheshti University, Tehran
چکیده [English]

Calculation the rate of change or differentiation of digital signal has always been one of the most important challenges in Digital Signal Processing field. Differentiating digital signals is essential in various applications. In many applications, even well-known methods aren’t useful and cause sharp increase in error and noise up to 10 times. One of the applications that is focused on in this paper is determining velocity from noisy and discrete data. Various aspects of this issue is investigated and the best derivation algorithm for the aforementioned application is designed and proposed. It was seen that Kalman filter method is the best approach for minimizing least square error for determining derivative from GPS data. It was also seen that Kalman filter method has not good transient response. This problem is somewhat improved with modification Kalman filter and using adaptive Kalman filter with appropriate weighting of old data. Another important aspect, which is also discussed in this paper, is adequate classification of various differentiation algorithms that is designed and referring the practical application of each algorithms. In order to depict the advantages of the methods, some practical results are given based on real GPS data for extracting instantaneous velocity vector.

کلیدواژه‌ها [English]

  • frequency response
  • velocity estimation
  • adaptive Kalman filter
  • Differentiation
  • GPS data

[1] D. Murio, Automatic numerical differentiation by discrete mollification, Computers & Mathematics with Applications, vol. 13, pp. 381-386, 1987.

[2] I. Knowles, R. J. Renka, Methods for numerical differentiation of noisy data, Electronic Journal of Differential Equations Conference, 2014, pp. 235-246.

[3] R. Chartrand, Numerical differentiation of noisy, nonsmooth data, ISRN Applied Mathematics, vol. 2011, 2011.

[4] D. Petrinovic, Causal Cubic Splines: Formulations, Interpolation Properties and Implementations, IEEE Transactions on Signal Processing, vol. 56, pp. 5442-5453, 2008.

[5] S. Tingna, W. Zheng, X. Changliang, Speed Measurement Error Suppression for PMSM Control System Using Self-Adaption Kalman Observer, Industrial Electronics, IEEE Transactions on, vol. 62, pp. 2753-2763, 2015.

[6] R. Ronsse, S. De Rossi, N. Vitiello, T. Lenzi, M. C. Carrozza, A. J. Ijspeert, Real-Time Estimate of Velocity and Acceleration of Quasi-Periodic Signals Using Adaptive Oscillators, Robotics, IEEE Transactions on, vol. 29, pp. 783-791, 2013.

[7] David Eager, Ann-Marie Pendrill, and Nina Reistad. "Beyond velocity and acceleration: jerk, snap and higher derivatives, European Journal of Physics, vol. 37, no. 6, 2016, pp. 065008.

[8] Ye, Shirong, Yongwei Yan, Dezhong Chen, Performance Analysis of Velocity Estimation with BDS, The Journal of Navigation, vol. 70, no. 3, 2017, pp. 580-594.

[9] Jakob M. Hansen, et al. Nonlinear Observer for Tightly Coupled Integrated Inertial Navigation Aided by RTK-GNSS Measurements, IEEE Transactions on Control Systems Technology, 2018.

[10] C. F. Gerald, Applied numerical analysis, Pearson Education India, 2004.

[11] A. Antoniou, Digital signal processing, McGraw-Hill Toronto, Canada, 2006.

[12] P. Holoborodko, Smooth noise robust differentiators, Consulted on, vol. 7, p. 2015, 2008.

[13] A. V. Oppenheim, R. W. Schafer, Discrete-time signal processing, Pearson Higher Education, 2010.

[14] S. W. Smith, The scientist and engineer's guide to digital signal processing, 1997.

[15] R. G. Lyons, Understanding digital signal processing, Pearson Education, 2010.

[16] C. Groetsch, Lanczo's generalized derivative, The American mathematical monthly, vol. 105, pp. 320-326, 1998.

[17] L. Washburn, The Lanczos derivative, Dept. of Maths, Whitman College, USA, Senior Project Archive, 2006.

[18] F. Janabi-Sharifi, V. Hayward, C. S. J. Chen, Discrete-time adaptive windowing for velocity estimation, IEEE Transactions on Control Systems Technology, vol. 8, pp. 1003-1009, 2000.

[19] D. G. Luenberger, Optimization by vector space methods, John Wiley & Sons, 1969.

[20] M. Rao, Q. Xia, Y. Ying, Modeling and advanced control for process industries: applications to paper making processes, Springer Science & Business Media, 2013.