تحلیل ناپایداری فلاتر یک بال مرفینگ در جهت تغییر طول دهانه تحت تاثیر پارامترهای مختلف

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده هوافضا، دانشگاه صنعتی امیرکبیر

2 عضو هیات علمی / دانشگاه صنعتی امیرکبیر

چکیده

هدف از تحقیق حاضر، تحلیل پایداری فلاتر بال مرفینگ هواپیما و بررسی آثار ناشی از تغییر طول در جهت دهانه است. وجود یک عضو مرفینگ به منظور تغییر دهانه بال هواپیما، باعث تغییر طول دهانه بال و در نتیجه باعث بر هم زدن معادلات سازه و آیرودینامیکی و وابستگی آن‌ها به مکان و زمان تغییر طول می‌شود. جهت تشکیل و حل معادلات حاکم، از مدل‌ سازه‌ای تیر اویلر برنولی و مدل آیرودینامیک ناپایای پیترز استفاده می‌شود. از جنبه‌های نوآوری این مقاله، تحلیل و بررسی آثار همزمان پارامترهایی همچون محل قرارگیری موتور، نیروی موتور و زاویه پس‌گرایی بر پایداری آیروالاستیک بال مرفینگ است. بررسی پایداری با استفاده از معادلات خطی و بر اساس تحلیل مقدار ویژه سیستم صورت گرفته و ارزیابی و دقت نتایج به دست آمده، از طریق مقایسه با نتایج موجود در پیشینه تحقیقات مورد بررسی قرار گرفته است. نتایج نشان می‌دهند که هم‌زمان با افزایش طول بال، وجود موتور یا یک زاویه پس‌گرایی کوچک باعث کاهش سرعت فلاتر شده و پدیده فلاتر را بحرانی‌تر می‌کنند. همچنین سرعت باز شدن بال مرفینگ اثر مثبت بر عملکرد آیروالاستیک داشته و هر چه بال مرفینگ سریعتر باز شود، سرعت فلاتر بیشتر خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Flutter Instability Analysis of a Aircraft Morphing Wing in spanwise direction affected by various parameters

نویسندگان [English]

  • Sayyed Hossein Moravej Barzani 1
  • Hossein Shahverdi 2
1 Aerospace Department, Amirkabir University of Technology
2 Aerospace Department, Amirkabir University
چکیده [English]

In this paper, the flutter instability of a morphing wing with change in its length is investigated. Presence of a morphing part in the wing makes a difference in the whole aeroelastic equations. In this regrad, Euler-Bernoulli beam model is considered to simulate the structural behavior of the wing and the well-known Peters unsteady aerodynamic model is utilized to compute the aerodynamic loads. The obtained partial differential aeroelastic equations are translated to the ODE ones using Galerkin’s method. Then, the eigenvalue approach is utilized to study the flutter instability of the aeroelastic system. The novelty of this work is to study the simultaneous effects of some parameters such as engine locations, thrust, sweep angles on the flutter instability of the morphing wing. The obtained results are compared with those available in the literature, and a good agreement is observed. It is found that the presence of engine or a low sweep angle simultaneously with the change of the morphing wing span decrease the flutter speed and a faster morphing process can get better aeroelastic performance.

کلیدواژه‌ها [English]

  • Aeroelastic Analysis
  • Morphing Wing
  • Peters Unsteady Aerodynamic
  • Engine Effect
[1] anders, B, FE Eastep, and E Forster. "Aerodynamic and Aeroelastic Characteristics of Wings with Conformal Control Surfaces for Morphing Aircraft." Journal of Aircraft 40, no. 1 (2003): 94-99.

[2] Bae, Jae-Sung, T Michael Seigler, and Daniel J Inman. "Aerodynamic and Static Aeroelastic Characteristics of a Variable-Span Morphing Wing." Journal of Aircraft 42, no. 2 (2005): 528-34

[3] Friswell, MI, D Baker, JE Herencia, F Mattioni, and PM Weaver. Compliant Structures for Morphing Aircraft. Proceedings of ICAST2006: 17th international conference on adaptive structures and technologies, 2006

[4] Ameri, Nima, Mark Lowenberg, and Michael Friswell. Modelling the Dynamic Response of a Morphing Wing with Active Winglets. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2007

[5] Herencia, J, Paul Weaver, and Mike Friswell. Morphing Wing Design Via Aeroelastic Tailoring. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007

[6] Baker, David and Michael I Friswell. The Design of Morphing Aerofoils Using Compliant Mechanisms. Vol. 6. Proceedings of 19th International Conference on Adaptive Structures and Technologies, 2008

[7] Bourdin, P, A Gatto, and MI Friswell. "Aircraft Control Via Variable Cant-Angle Winglets." Journal of Aircraft 45, no. 2 (2008): 414-23

[8] Seber, Guclu and Evren Sakarya. "Nonlinear Modeling and Aeroelastic Analysis of an Adaptive Camber Wing." Journal of Aircraft 47, no. 6 (2010): 2067-74

[9] Vos, Roelof, Zafer Gurdal, and Mostafa Abdalla. "Mechanism for Warp-Controlled Twist of a Morphing Wing." Journal of Aircraft 47, no. 2 (2010): 450-57

[10] Ajaj, RM, EI Saavedra Flores, MI Friswell, G Allegri, BKS Woods, AT Isikveren, and WG Dettmer. "The Zigzag Wingbox for a Span Morphing Wing." Aerospace Science and Technology 28, no. 1 (2013): 364-75

[11] Huang, Ren and Zhiping Qiu. "Transient Aeroelastic Responses and Flutter Analysis of a Variable-Span Wing During the Morphing Process." Chinese Journal of Aeronautics 26, no. 6 (2013): 1430-38

[12] Woods, BKS and MI Friswell. Structural Analysis of the Fish Bone Active Camber Concept. Vol. 912. Proceedings of the AIDAA XXII Conference, 2013

[13] Woods, Benjamin K and Michael I Friswell. Fluid-Structure Interaction Analysis of the Fish Bone Active Camber Mechanism. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013

[14] Ajaj, RM, EI Saavedra Flores, MI Friswell, and FA Diaz De la O. "Span Morphing Using the Compliant Spar." Journal of Aerospace Engineering 28, no. 4 (2014): 04014108

[15] Pecora, R, M Magnifico, F Amoroso, and E Monaco. "Multi-Parametric Flutter Analysis of a Morphing Wing Trailing Edge." The Aeronautical Journal 118, no. 1207 (2014): 1063-78

[16] Wang, Chen, Hamed Haddad Khodaparast, and Michael I Friswell. Investigating the Benefits of Morphing Wing Tip Devices-a Case Study. International Forum on Aeroelasticity and Structure Dynamics, 2015

[17] S. Shams et al, Kinematic analysis of articulated flapping wings mechanisms considering nonlinear quasi-steady aerodynamic, Modares Mechanical Engineering Journal, Vol. 17, No. 12, pp. 87-97, 2018. (in Persianفارسی).

[18] Barmby, John G, Herbert J Cunningham, and IE Garrick. "Study of Effects of Sweep on the Flutter of Cantilever Wings." (1951).

[19] Molyneux, WG and H Hall. The Aerodynamic Effects of Aspect Ratio and Sweepback on Wing Flutter. Citeseer, 1957

[20] Lottati, I. "Flutter and Divergence Aeroelastic Characteristics for Composite Forward Swept Cantilevered Wing." Journal of Aircraft 22, no. 11 (1985): 1001-07

[21] Karpouzian, G and Liviu Librescu. "Nonclassical Effects on Divergence and Flutter of Anisotropic Swept Aircraft Wings." AIAA journal 34, no. 4 (1996): 786-94

[22] Mazidi, A and SA Fazelzadeh. "Flutter of a Swept Aircraft Wing with a Powered Engine." Journal of Aerospace Engineering 23, no. 4 (2009): 243-50

[23] Https://Fa.Wikipedia.Org.

[24] Patil, Mayuresh J. Nonlinear Aeroelastic Analysis, Flight Dynamics, and Control of a Complete Aircraft. Citeseer, 1999.