بررسی تاثیر شکل حفرات بر میزان جذب انرژی ساختارهای مشبک دو بعدی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

2 فارغ التحصیل کارشناسی ارشد / دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

چکیده

در این مقاله رفتار دینامیکی مواد مشبک، با هدف بررسی تاثیر میزان تخلخل، نرخ کرنش و مورفولوژی‌های مختلف بر پاسخ مکانیکی، به‌صورت عددی شبیه‌سازی شده‌است. برای این منظور مد‌ل‌های اجزا محدود دو بعدی، با مورفولوژی‌های مختلف در تخلخل‌ها و نرخ‌کرنش‌های متفاوت و با استفاده از مدل مقاومت و شکست جانسون_کوک در نرم‌افزار آباکوس شبیه‌سازی شده‌اند. نتایج بدست آمده نشان می‌دهد که پاسخ مکانیکی این مواد، بشدت به شکل حفره‌ها وابسته است. از میان مورفولوژی‌های مختلف بیشترین جذب انرژی به مورفولوژی مستطیل عمودی و بیضی عمودی اختصاص دارد، چراکه مکانیزم بارگذاری محوری آنها غالب است. از سوی دیگر میزان جذب انرژی برای هر مورفولوژی، تابعی از میزان تخلخل آن بوده و بسته به میزان تخلخل می‌توان مورفولوژی مناسب برای جذب حداکثری انرژی را انتخاب نمود. در عین حال می‌توان دید که با افزایش مقدار نرخ کرنش تا یک مقدار مشخص مقدار تنش فروپاشی ماده افزایش و از آن پس با افزایش موج تنش کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effects of pore morphology on the energy absorption of two-dimensional lattice structures

نویسندگان [English]

  • Mohammad Reza Karamooz-Ravari 1
  • Zahra Saghazadeh-Mahani 2
  • Reza Dehghani 1
1 Assistant Professor / Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology
2 Graduated Student / Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology
چکیده [English]

Cellular materials are widely used in aerospace industries due to high energy absorption and strength-to-weight ratio. In this paper, the dynamic response of these materials is numerically investigated in order to assess the effects of porosity, strain rate and various pore morphologies on the mechanical response. To do so, two-dimensional finite element models, with different pore morphologies at various porosities and strain rates, are developed utilizing Johnson-Cook strength and failure model through ABAQUS finite element package. The obtained results show that the mechanical responses of these materials strongly depend on the pore morphologies. Among the different morphologies, the highest energy absorption is associated with the vertical ellipse and vertical rectangle morphology. In addition, the energy absorption of each morphology is a function of the porosity value and, depending on the porosity, an appropriate morphology can be selected for the sake of maximum energy absorption. The collapse stress of the material increases by increasing the strain rate until reaching a specific value and then decreases due to the high stress wave.

کلیدواژه‌ها [English]

  • energy absorption
  • Dynamic response
  • Porous materials
  • cellular materials
  • pore morphology
  • Strain Rate
[1]  Z. Wang, H. Ma, L. Zhao, G. Yang, Studies on the dynamic compressive properties of open-cell aluminum alloy foams, Scripta Materialia, Vol. 54, No. 1, pp. 83-87, 2006.
[2] A. Nagy, W. L. Ko, U. S. Lindholm, Mechanical Behavior of Foamed Materials Under Dynamic Compression, Journal of Cellular Plastics, Vol. 10, No. 3, pp. 127-134, 1974.
[3] Y. Shen, S. McKown, S. Tsopanos, C. J. Sutcliffe, R. Mines, The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures, Journal of  Sandwich Structures and Materials, Vol. 12, No. 2, pp. 159-180, 2010.
[4] N. Biswas, J. L. Ding, Numerical study of the deformation and fracture behavior of porous Ti6Al4V alloy under static and dynamic loading, International Journal of Impact Engineering, Vol. 82, pp. 89-102, 2015.
[5]  F. Yi, Z. Zhu, F. Zu, S. Hu, P. Yi, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams, Materials Characterization, Vol. 47, No. 5, pp. 417-422, 2001.
[6] Z. Zheng, C. Wang, J. Yu, S. R. Reid, J. J. Harrigan, Dynamic stress–strain states for metal foams using a 3D cellular model, Journal of the Mechanics and Physics of Solids, Vol. 72, pp. 93-114, 2014.
[7]  Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J.A. Warren, S.D. Fay, R. Goodall, I. Todd, H. Askes, Energy absorption in lattice structures in dynamics: Experiments, International Journal of Impact Engineering, Vol. 89, pp. 49-61, 2016.
[8] N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng, H. Zhang, Failure and energy absorption characteristics of four lattice structures under dynamic loading. Materials & Design, Vol. 169: pp. 107655, 2019.
[9] Z. Xu, L. Zhang, L. Wang, J. Zuo, M. Yang, Computational characterization of the structural and mechanical properties of nanoporous titania. RSC Advances, Vol. 9, No. 27, pp. 15298-15306, 2019.
[10] M. R. Karamooz Ravari, M. Kadkhodaei, A. Ghaei, A unit cell model for simulating the stress-strain response of porous shape memory alloys, Journal of Materials Engineering and Performance, Vol. 24, No. 10, pp. 4096-4105, 2015.
[11] M. R. Karamooz Ravari, S. Nasr Esfahani, M. Taheri Andani, M. Kadkhodaei, A. Ghaei, H. Karaca, M. Elahinia, On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures, Smart Materials and Structures, Vol. 25, No. 2, pp. 025008, 2016.
[12] G. R. Johnson, W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering fracture mechanics, Vol. 21, No. 1, pp. 31-48, 1985.
[13] J. L. Ding, Thermal and mechanical analysis of material response to non-steady ramp and steady shock wave loading, Journal of the Mechanics and Physics of Solids, Vol. 54, No. 2, pp. 237-265, 2006.
[14] A. Hillerborg, M. Modéer, P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, Vol. 6, No. 6, pp. 773-781, 1976.
[15] H. Shen, L. C. Brinson, A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium, Journal of Mechanics of Materials and Structures, Vol. 1, No. 7, pp. 1179-1204, 2006.
[16] C. Yan, L. Hao, A. Hussein, P. Young, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 51, pp. 61-73, 2015.
[17] M. R. Karamooz Ravari, M. Kadkhodaei, A. Ghaei, Effects of asymmetric material response on the mechanical behavior of porous shape memory alloys, Journal of Intelligent Material Systems and Structures, Vol. 27, No. 12, pp. 1687-1701, 2016.