بررسی خواص مکانیکی مواد مدرج پله‌ای پایه پلیمری تقویت شده با نانو لوله کربن با استفاده از آزمون خمش سه نقطه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی مکانیک / دانشکده مهندسی مکانیک، دانشگاه تبریز

2 دکتری مهندسی مواد / دانشکده مهندسی مکانیک، دانشگاه تبریز

3 عضو هیات علمی / گروه مهندسی مکانیک، جهاد دانشگاهی صنعتی شریف

چکیده

هدف از این مقاله، بررسی خواص مکانیکی مواد مدرج پله ای پایه اپوکسی تقویت شده با نانو لوله‌های کربنیاست. در این مطالعه، خواص مکانیکی با آزمون خمش سه نقطه بررسی شده است. روشی که در این تحقیق مورد استفاده قرار گرفته است روش های محاسبه مقدار چقرمگی شکست است. نمونه‌ها با شش درصد جرمی مختلف از نانو لوله‌های کربنی ساخته شده‌اند. درصدهای جرمی نانو لوله‌های کربنی عبارتند از 0%، 0/01%، 0/05%، 0/1%، 0/2%، 0/3%. از دستگاه اولتراسونیک برای توزیع یکنواخت و کاهش آگلومره شدن نانو لوله های کربن در زمینه اپوکسی استفاده شد. به منظور بررسی چقرمگی شکست، ترک های یکسان در دو جهت مختلف بر روی نمونه‌ها یکبار در سمت با درصد پایین  نانو لوله کربن و بار دیگر در سمت با درصد بالای  نانو لوله کربنایجاد شد. آزمایش خمش سه نقطه حداقل سه بار برای هر نمونه تکرار شد. برای هر ترک، مقادیر مختلف چقرمگی شکست و نیروهای شکست وجود دارد. علاوه بر این، سطح شکست نمونه‌ها با استفاده از میکروسکوپ الکترونی روبشی (SEM) مورد بررسی قرار گرفت. نتایج نشان داد که جهت ترک، درصد ذرات نانو لوله کربنی و پراکندگی نانو لوله‌های کربن پارامترهای مهم هستند به طوری که در مواد کامپوزیتی با تعداد لایه‌های بیشتر، چقرمگی شکست بالاتر بود و حضور درصد جرمی بالاتر از ذرات نانو لوله کربنی تنها منجر به بهبود استحکام تک لایه می‌شود و در افزایش چقرمگی کل ماده اثرگذار نیست. همچنین در این تحقیق، مدول الاستیسیته خمشی که متفاوت از مدول الاستیسیته کششی است، بررسی گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanical properties of nanocomposite based on epoxy using three point bending test

نویسندگان [English]

  • Sahar Moharrerzadeh Kurd 1
  • Ayda Shahriari 2
  • Ashkan Sepehrafghan 3
1 PhD in Mechanical Engineering / Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Tabriz
2 PhD in materials engineering, / Department of Materials Science and Engineering, Faculty of Mechanical Engineering
3 Assistant, / ACECR Sharif university branch, Tehran
چکیده [English]

The purpose of this paper is to investigate mechanical properties of nanocomposite based on epoxy reinforced with carbon nano tubes (CNTs). This study considers the mechanical properties by three point bending test. The technique which is used in this study is one of the methods to calculate fracture toughness value. The specimens with four different mass percentages of carbon nano tubes were made. The mass percentages are 0%,0.01%, 0.05%, 0.1%, 0.2% and 0.3%. An ultrasonic device was used to disperse the CNTs uniformly in the epoxy matrix. So, the agglomeration of the CNT particles decreased in the matrix. In order to investigate the fracture toughness, same size cracks were created in two different directions on the specimens including low CNTs content grade and high CNTs content grade. Three point bending test was repeated at least three times for each of specimens. For each crack, there are different values of the fracture toughness and the fracture forces. Furthermore, the fracture surfaces of samples were investigated using scanning electron microscopy (SEM). The results showed that the direction of the crack, CNTs content and dispersion of the carbon nano tubes are important parameters. Also, flexural elasticity modulus that is different from tensile elasticity modulus was considered in this research.

کلیدواژه‌ها [English]

  • polymer matrix composites؛ carbon nano tubes؛ mechanical properties
  • Bending test
[1]. H. Wagner, O. Lourie, O, Y. Feldman, R.Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Applied physics letters, Vol. 72, No. 2, pp. 188-190, 1998.
[2]. P.M. Ajayan, , L.S. Schadler, C. Giannaris, A. Rubio, Single-walled carbon nanotube–polymer composites: strength and weakness, Advanced materials, Vol. 12, No.10, pp. 750-753, 2000.
[3]. A.B. Dalton, S. Collins, E. Muñoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres, Nature, Vol. 423, No. 6941, pp. 703-703, 2003.
[4]. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes, Annual review of materials research, Vol. 33, No. 1, pp. 419-501, 2003.
[5]. X. Li, L. Shao, N. Song, L. Shi, P. Ding, Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content, Composites Part A: Applied Science and Manufacturing, Vol. 88, pp. 305-314, 2016.
[6]. F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets, Composites Part A: Applied Science and Manufacturing, Vol. 87, pp. 10-22, 2016.
[7]. D.C. Davis, B.D. Whelan, An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite, Composites Part B: Engineering, Vol. 42, No. 1, pp. 105-116, 2011.
[8]. G. Lubineau, A. Rahaman, A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements, Carbon, Vol. 50, No. 7, pp. 2377-2395, 2012.
[9]. M.H. Gabr, M.A. Elrahman, K. Okubo, T. Fujii, Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy, Composite Structures, Vol.92, No. 9, pp. 1999-2006, 2010.
[10]. M. Li, Y. Gu, Y. Liu, Y. Li , Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers, Carbon, Vol. 52, pp. 109-121, 2013.
[11]. K. Sharma, M. Shukla, Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling, Journal of Nanomaterials, Vol. 2014, No. 2, pp. 1-11, 2014.
[12]. C.-H. Tseng, C.-C.Wang, C.-Y. Chen, Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites, Chemistry of Materials, Vol. 19, No. 2, pp. 308-315, 2007.
[13]. J.-M. Park, D.-S. Kim, J.-R. Lee, T.-W. Kim, Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique, Materials Science and Engineering: C, Vol. 23, No. 6, pp. 971-975, 2003.
[14]. F.Inam, D.W. Wong, M. Kuwata, T. Peijs, Multiscale hybrid micro-nanocomposites based on carbon nanotubes and  carbon fibers, Journal of Nanomaterials, Vol. 2010, No. 9, 2010.
[15]. M. Ayatollahi, S. Shadlou, M. Shokrieh, Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites, Engineering Fracture Mechanics, Vol. 78, No. 14, pp. 2620-2632, 2011.
[16]. A. Patra, N. Mitra, Interface fracture of sandwich composites: Influence of MWCNT sonicated epoxy resin, Composites Science and Technology, Vol. 101, pp. 94-101, 2014.
[17]. S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes, Materials, Vol. 9, No. 4, pp. 220, 2016.
[18]. J. Tsai, B. Huang, Y. Cheng, Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles, Procedia Engineering, Vol. 14, pp. 1982-1987, 2011.
[19]. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, Vol. 40, No. 21, pp. 5967-5971, 1999.
[20]. L. Sun, G. Warren, J. O’reilly, W. Everett, S. Lee, D. Davis, D. Lagoudas, H.-J. Sue, Mechanical properties of surface-functionalized SWCNT /epoxy composites, Carbon, Vol. 46, No. 2, pp. 320-328, 2008.
[21]. R. Andrews, M. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science, Vol. 8, No. 1, pp. 31-37, 2004.
[22]. J.N. Coleman, U. Khan, Y.K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Advanced materials, Vol. 18, No. 6, pp. 689-706, 2006.
[23]. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, Vol. 39, No. 16, pp. 5194-5205, 2006.
[24]. Y.-P. Sun, K. Fu, Y. Lin, W. Huang, Functionalized carbon nanotubes: properties and applications, Accounts of chemical research, Vol. 35, No. 12, pp. 1096-1104, 2002.
[25]. J.A. Kim, D.G. Seong, T.J. Kang, J.R. Youn, Effects of surface modification on rheological and mechanical properties of CNT /epoxy composites, Carbon, Vol. 44, No. 10, pp. 1898-1905, 2006.
[26]. L.-c. Tang, H. Zhang, J.-h. Han, X.-p. Wu, Z. Zhang, Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes, Composites Science and Technology, Vol. 72, No. 1, pp. 7-13, 2011.
[27]. L. Esposito, J. Ramos, G. Kortaberria, Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application, Progress in organic coatings, Vol. 77, No. 9, pp. 1452-1458, 2014.
[28]. H. Mahmood, L. Vanzetti, M. Bersani, A: Effect of sonication on the mechanical response of graphene nanoplatelets/
glass fabric/epoxy laminated nanocomposites, Composites Part A: Applied Science and Manufacturing, Vol. 107, pp. 112-123, 2018.
[29]. F. Li, B. Tang, J. Xiu, S. Zhang, Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength, Molecules, Vol. 21, No. 5, pp. 547, 2016.
[30]. E. Borowski, E. Soliman, U.F. Kandil, M.R. Taha, Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes, Polymers, Vol. 7, No. 6, pp. 1020-1045, 2015.
[31]. D. Quan, D. Carolan, C. Rouge, N. Murphy, A. Ivankovic, Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores, International Journal of Adhesion and Adhesives, Vol. 81, pp. 21-29, 2018.
[32]. S.M. Kurd, S. Hassanifard, S. Hartmann, Fracture toughness of epoxy-based stepped functionally graded materials reinforced with carbon nanotubes, Iranian Polymer Journal, Vol. 4, No. 26, pp. 253-260, 2017.
[33]. J.-H. Kim, G.H. Paulino, On fracture criteria for mixed-mode crack propagation in functionally graded materials, Mechanics of Advanced Materials and Structures, Vol. 14, No. 4, pp. 227-244, 2007.
[34]. G. Seretis, I. Theodorakopoulos, D. Manolakos, C. Provatidis, Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers, Composites Part B: Engineering, Vol. 147, pp. 33-41, 2018.
[35]. G.-d. Xu, Z.-h. Wang, T. Zeng, S. Cheng, D.-n. Fang, Self-assembled montmorillonite–carbon nanotube for epoxy composites with superior mechanical and thermal properties, Composites Science and Technology, Vol. 156, pp. 296-304, 2018.
[36]. S. Zeng, M. Shen, L. Yang, Y. Xue, F. Lu, S. Chen, Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles, Composites Science and Technology, Vol. 162, pp. 131-139, 2018.
[37]. https://www.nanocyl.com/product/nc7000.
[38] F.R. Tomas, K. H. Finn, O. Torbjørn, The Optimum Dispersion of Carbon Nanotubes for  Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment, Journal of Nanotechnology, Vol. 2012, pp. 1-14, 2012.
[39]. A. Standard, D5045-99 (2007) e1, Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, Annual Book of ASTM Standards 8.
[40]. A.F. Bower, Applied mechanics of solids. CRC press, 2009.
[41]. R. Rothon, Particulate-filled polymer composites, iSmithers Rapra Publishing, 2003.
[42]. E. Orowan, Fracture and strength of solids, Reports on progress in physics, Vol. 12, No. 1, pp. 185, 1949.
[43]. C. Zweben, W. Smith, M. Wardle, Test methods for fiber tensile strength, composite flexural modulus, and properties of fabric-reinforced laminates, In: Composite Materials: Testing and Design (Fifth Conference) 1979, ASTM International.
[44]. A.S.D.o.M. Properties, test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, In:  1997. American Society for Testing Materials.