هدایت برخط هواپیمای بی سرنشین جهت اجتناب از تهدیدهای شبکه ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک ‌اشتر

2 عضو هیات علمی / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک ‌اشتر

3 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

چکیده

وجود تهدیدها در منطقه عملیاتی، می­تواند با به خطر انداختن ایمنی پرنده، موفقیت مأموریت را با چالش روبرو سازد. در این تحقیق، با هدف بسط الگوریتمی برخط و کارآمد جهت اجتناب از تهدیدهای شبکه­ای، روشی نوین در قالب حلقه درونی- حلقه برونی پیشنهاد شده که به­طور مستقیم، دینامیک هواپیما را در استراتژی هدایت وارد می­سازد. بر خلاف عموم روش­های موجود، در این الگوریتم مسیر مستقیما تولید نمی­شود؛ بلکه در حلقه برونی، فرامین هدایتی مقتضی در حین پرواز و بر اساس شرایط لحظه­ای تولید و برای اجرا به دینامیک پرنده اعمال می­شود. در حلقه درونی، یک مدل سه درجه آزادی جرم نقطه­ای بسط یافته است که تأخیرهای موجود در دینامیک پرنده را لحاظ می­سازد. مسیر پرواز، به تدریج و در پی اعمال این فرامین به دینامیک پرنده، شکل می­گیرد. مسأله هدایتی، در قالب رهیافت فازی مبتنی بر رفتار تدوین شده است. دو رفتار مستقل شامل رفتار هدایت به سمت هدف و رفتار اجتناب از تهدیدها تعریف شده است که فرامین صادره از آنها، با وزن­های پویا تجمیع می­شوند. نتایج حاصل از شبیه­سازی، حاکی از کارآیی بسیار خوب روش پیشنهادی است.

کلیدواژه‌ها


عنوان مقاله [English]

Online UAV guidance for netted-threat avoidance

نویسندگان [English]

  • Omid Kazemifar 1
  • Alireza Babaee 2
  • Mahdi Mortazavi 3
1 Ph.D. Candidate / Mechanical Engineering Department, Malek Ashtar University of Technology
2 Assistant Professor/ Mechanical Engineering Department, Malek Ashtar University of Technology
3 Associate Professor / Department of Aerospace Engineering, Amirkabir University of Technology
چکیده [English]

Presence of threats in the UAV’s operational environment may challenge the mission success by putting in danger the vehicle’s safety. Aimed at developing an efficient online guidance algorithm to avoid netted threats, this research proposes a novel method which incorporates the flying vehicle dynamics directly into the guidance strategy. Unlike almost all existing works, the proposed algorithm does not generate the flight path directly, instead determines appropriate guidance commands (GCs) for control system at every point along the way. The GCs are generated in accordance with the current conditions. A suitable 3DOF point mass UAV dynamic model is developed which takes the lags in the vehicle dynamics into account. The flight path forms gradually as a result of applying the GCs to the vehicle dynamics. The UAV guidance problem is considered within a fuzzy behavior-based framework. Two independent behaviors are introduced, namely, go-to-target and threat avoidance. The issued commands of these behaviors are integrated with adjustable weighting factors. Simulation results demonstrate that proposed approach is efficient and works very well.

کلیدواژه‌ها [English]

  • Threat avoidance
  • threat netting
  • Path Planning
  • Fuzzy behavior-based approach
  • point mass model
[1] Y. Eun, H. Bang, Cooperative control of multiple unmanned aerial vehicles using the potential field theory, Journal of Aircraft, Vol. 43, No. 6, pp. 1805-1814, 2006.
[2] Y. Eun, H. Bang, Cooperative task assignment and path planning of multiple uavs using genetic algorithm, AIAA Infotech@Aerospace 2007 Conference and Exhibit, Rohnert Park, California, May 7-10, 2007.
[3] T. W. Mclain, R. W. Beard, Trajectory planning for coordinated rendezvous of unmanned air vehicles, AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, August 14-17, 2000.
[4] P. R. Chandler, S. Rasmussen, M. Pachter, UAV cooperative path planning, AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, August 14-17, 2000.
[5] M. Pei-bei, F. Zuo-e, J. Jun, Cooperative control of multi-UAV with time constraint in the threat environment, Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, pp. 2424-2428, 2014.
[6] Y. Qu, Y. Zhang, Y. Zhang, Optimal flight path planning for UAVs in 3-D threat environment, 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, pp. 149-155, 2014.
[7] R. L. Pettit, M.L. Homer, An autonomous threat evasion response algorithm for unmanned air vehicles during low altitude flight, AIAA 1st Intelligent Systems Technical Conference, Chicago IL, September 20-22, 2004.
[8] N. Özalp, O.K. Sahingoz, Optimal UAV path planning in a 3D threat environment by using parallel evolutionary algorithms, 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Grand Hyatt Atlanta, Atlanta, GA, May 28-31, 2013.
[9] T. Turker, O.K. Sahingoz, G. Yilmaz, 2D path planning for UAVs in radar threatening environment using simulated annealing algorithm, 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, Colorado, USA, June 9-12, 2015.
[10] N. Wen, X. Su, P. Ma, L. Zhao, Online creating an improved uav path in complex and hostile environments, 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp. 962-967, 2015.
[11] N. Wen, L. Zhao, X. Su, P. Ma, UAV online path planning algorithm in a low altitude dangerous environment, IEEE/CAA Journal of Automatica Sinica, Vol. 2, No. 2, pp. 173-185, 2015.
[12] Z. Zheng, Y. Liu, X. Zhang, More threat information sharing, more effective UAV real-time path planning?, Knowledge-Based Systems, Vol. 114, No. 1, pp. 36-46, 2016.
[13] C. Gao, Z. Zhen, H. Gong, A self-organized search and attack algorithm for multiple unmanned aerial vehicles, Journal of Aerospace Science and Technology, Vol. 54, No. 1, pp. 229-240, 2016.
[14] L. Hao, C. Guo, L. Wu, A study on route planning of helicopter in low altitude area, 2016 IEEE First International Conference on Data Science in Cyberspace, pp.  484-488, 2016.
[15] A. R. Babaei, J. Karimi, Designing optimal trajectory in presence of terrain and threat for unmanned aerial vehicles, Aerosapce Mechanics (Dynamics, Vibrations and Control) Journal, Vol. 7, No. 1, pp. 55-67, 2011. (in Persian).
[16] B. Miller, K. Stepanyan, A. Miller, M. Andreev, 3D path planning in a threat environment, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011.
[17] R. Kamyar, E. Taheri, Aircraft optimal terrain/threat-based trajectory planning and control, Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, pp. 466-483, 2014.
[18] F. Xiaowei, G. Xiaoguang, Effective real-time unmanned air vehicle path planning in presence of threat netting, Journal of Aerospace Information Systems, Vol. 11, No. 4, pp. 170-177, 2014.
[19] P. T. Jardine, S. Givigi, A predictive motion planner for guidance of autonomous UAV systems, 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, April 18-21, 2016.
[20] H. Seraji, A. Howard, Behavior-based robot navigation on challenging terrain: a fuzzy logic approach, IEEE Transactions on Robotics and Automation, Vol. 18, No. 3, pp. 308-321, 2002.
[21] P. Rusu, E.M. Petriu, T.E. Whalen, A. Cornell, H.J.W. Spoelder, Behavior-based neuro-fuzzy controller for mobile robot navigation, IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 4, pp. 1335-1340, 2003.
[22] S. Parasuraman, V. Ganapathy, B. Shirinzadeh, Behaviour based mobile robot navigation technique for real world environments using fuzzy logic system, 2004 IEEE International Conference on Systems, Man and Cybernetics, pp. 3359-3364, 2004.
[23] K. Watanabe, K. Izumi, J. Maki, K. Fujimoto, A fuzzy behavior-based control for mobile robots using adaptive fusion units, Journal of Intelligent and Robotic Systems, Vol. 42, No. 1, pp. 27–49, 2005.
[24] M. R. Anderson, A. C. Robbins, Formation flight as a cooperative game, Proceedings of the AIAA GNC Conference and Exhibit, pp. 244–251, 1998.
[25] F. Imado, M. Nagayama, M. J. Tahk, A new missile guidance algorithm against a maneuvering target, AIAA Guidance, Navigation, and Control Conference, pp. 145–153, 1998.
[26] B. K. Jung, Y. Kim, Guidance laws for anti-ship missiles using impact angle and impact time, AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[27] A. R. Babaei, O. Kazemifar, Integrating the guidance and control algorithm for 6D waypoint navigation, The 15th International Conference of Iranian Aerospace Society, Civil Aviation Technology College, Tehran, Iran, Feb 23-25, 2016. (in Persian).
[28] F. Yihong, L. Weimin, Z. Xiaoguang, X. Xin, Threat assessment based on adaptive intuitionistic fuzzy neural network, 2011 Fourth International Symposium on Computational Intelligence and Design, pp. 262–265, 2011.
[29] P. T. Kabamba, S. M. Meerkov, F. H. Zeitz, Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking, Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, pp. 279–288, 2006.