مدلسازی ریاضی تعامل انسان ماشین در شبیه‌ساز عملکرد چند وظیفه‌ای خلبان با استفاده از تئوری اطلاعات

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای / دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

3 عضو هیات علمی / پژوهشگاه هوافضا

چکیده

در این مقاله‌ تعامل میان انسان و ماشین در شبیه‌ساز استاندارد وظایف خلبان‌، با بهره‌گیری از مفاهیم موجود در تئوری اطلاعات‌ مدلسازی می‌گردد‌. برای این منظور، نرخ تبادل داده‌‌ در هر یک از زیرسیستم‌های شبیه‌ساز استخراج‌ می‌شود و با برآیند گرفتن از آن‌ها‌، مقدار نرخ تبادل دادة کلی ایجاد شده در شبیه‌ساز بدست می‌آید‌. در مرحلة بعد‌، نرخ تبادل دادة خروجی تولید شده توسط انسان در تعامل با شبیه‌ساز محاسبه گشته و از تلفیق آن با نرخ اطلاعات ورودی‌، یک معیار واحد جهت ارزیابی عملکرد وی ارائه می‌گردد‌. در نهایت کارایی این شاخص در محیط شبیه‌ساز عملکرد چند وظیفه‌ای خلبان با در نظر گرفتن سه سطح مختلف بارکاری (کم‌، متوسط و زیاد)‌، از طریق انجام یک آزمون‌ عملی توسط تعدادی سوژة انسانی مورد بررسی قرار خواهد گرفت. نتایج حاصل شده نشان می‌دهد که سوژه‌ها با بالا رفتن سطح بارکاری‌، تلاش مضاعفی را در قالب زیاد کردن ‌نرخ تبادل دادة خروجی ایجاد شده توسط خود بروز می‌دهند. اما با این وجود بر اساس تحلیل آماری صورت گرفته‌، کیفیت کارکرد سوژه‌ها بین سطوح کم‌، متوسط و زیاد از بارکاری دارای اختلاف معنادار بوده و بالا رفتن شدید بارکاری‌، موجب افت قابل توجه معیار عملکرد بدست آمده می‌شود‌.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical modeling of human-machine interaction in multi attribute piloting tasks simulator using information theory

نویسندگان [English]

  • Mohammad Reza Mortazavi 1
  • Kamran Raissi 2
  • Seyed Hamed Hashemi Mehne 3
1 PhD candidate/Amirkabir University of Technology
2 Assistant Professor, Department of Aerospace Engineering, Amirkabir University of Technology, Tehran
3 Aerospace Research Institute, Tehran, Iran
چکیده [English]

In this paper, using the concepts related to the information theory, the model of interaction between human and machine in a standard simulator of piloting tasks is created. For this purpose, baud rate generated in all subsystems of the simulator is calculated and by summing them, the total baud rate is obtained. Next, output baud rate produced by human during working with the simulator is computed and subsequently, a unique index facilitating human performance investigation is proposed. Finally, the capability of this index is examined in the simulator of piloting tasks via a practical test performed by some subjects for different levels of workload (low, medium, and high). Results demonstrate that when a substantial growth in the workload level occurs, subjects try to show extra effort through increasing their generated output baud rate. On the other hand, according to the statistics analysis it can be concluded that there is a significant difference between performance of subjects across low, medium, and high levels of workload, i.e. a severe growth in the workload level causes considerable drop in performance index.

کلیدواژه‌ها [English]

  • Modeling
  • Human-Machine Interaction
  • Multi Attribute Task Battery
  • Information Theory
  • Performance Index
[1] R. Parasuraman, C. D. Wickens, Humans: Still vital after all these years of automation, Human Factors: The Journal of the Human Factors and Ergonomics Society, Vol. 50, No. 3, pp. 511-520, 2008.

[2] T. B. Sheridan, R. Parasuraman, Human‑Automation Interaction, Reviews of Human Factors and Ergonomics, Vol. 1, No. 1, pp. 89-129, 2005.

[3] S. Yang, J. Zhang, An adaptive human–machine control system based on multiple fuzzy predictive models of operator functional state, Biomedical Signal Processing and Control, Vol. 8, No. 3, pp. 302-310, 2013.

[4] A. Mazloumi, M. Kumashiro, H. Izumi, Y. Higuchi, Examining the influence of different attentional demands and individuals’ cognitive failure on workload assessment and psychological functioning, International journal of Occupational hygiene, Vol. 2, No. 1, pp. 17‑24, 2010.

[5] C. Rosen, The myth of multitasking, The New Atlantis, Vol. 20, No. 1, pp. 105-110, 2008.

[6] A. N. Camden, Theoretical Throughput Capacity: Capabilities of Human Information Processing during Multitasking, PhD Thesis, Wright State University, Dayton, USA, 2015.

[7] R. F. Adler, R. Benbunan-Fich, Juggling on a high wire: Multitasking effects on performance, International Journal of Human-Computer Studies, Vol. 70, No. 2, pp. 156-168, 2012.

[8] A. S. Clare, Modeling Real‑time Human‑Automation Collaborative Scheduling of Unmanned Vehicles, PhD Thesis, Massachussetts Institute of Technology, Cambridge, USA, 2013.

[9] Y. Boussemart, J. L. Fargeas, M. L. Cummings, N. Roy, Comparing Learning Techniques for Hidden Markov Models of Human Supervisory Control Behavior, AIAA Infotech@Aerospace Conference, Seattle, USA, April 6-9, 2009.

[10] C. Berka, D. J. Levendowski, M. N. Lumicao, A. Yau, G. Davis, V. T. Zivkovic, R. E. Olmstead, P. D. Tremoulet, P. L. Craven, EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks, Aviation, Space, and Environmental Medicine, Vol. 78, No. 5, pp. 231-244, 2007.

[11] R. Wang, J. Zhang, Y. Zhang, X. Wang, Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model, Biomedical Signal Processing and Control, Vol. 7, No. 5, pp. 490-498, 2012.

[12] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, F. Babiloni, Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness, Neuroscience & Biobehavioral Reviews, Vol. 44, No. 1, pp. 58-75, 2014.

[13] D. B. Kaber, L. J. Prinzel III, Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research, Biomedical Signal Processing and Control, NASA-TM-2006-214504, Virginia: Langley Research Center, 2006.

[14] S. Yang, J. Zhang, An adaptive human‑machine control system based on multiple fuzzy predictive models of operator functional state, Biomedical Signal Processing and Control, Vol. 8, No. 3, pp. 302-310, 2013.

[15] G. F. Wilson, C. A. Russell, Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding, Human Factors: The Journal of the Human Factors and Ergonomics Society, Vol. 49, No. 6, pp. 1005-1018, 2007.

[16] C. H. Ting, M. Mahfouf, A. Nassef, D. A. Linkens, G. Panoutsos, P. Nickel, A. C. Roberts, G. R. J. Hockey, Real‑Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations, IEEE Transactions on Systems, Man and Cybernetics- Part A: Systems and Humans, Vol. 40, No. 2, pp. 251-262, 2010.

[17] G. Borghini, R. Isabella, G. Vecchiato, J. Toppi, L. Astolfi, C. Caltagirone, F. Babiloni, Brainshield: HREEG study of perceived pilot mental workload, Italian journal of aerospace medicine, Vol. 5, No. 1, pp. 34-47, 2011.

[18] Y. Lim, A. Gardi, R. Sabitini, S. Ramasamy, T. Kistan, N. Ezer, J. Vince, R. Bolia, Avionics Human-Machine Interfaces and Interactions for Manned and Unmanned Aircraft, Progress in Aerospace Sciences, Vol. 102, No. 1, pp. 1-46, 2018.

[19] Y. Santiago-Espada, R. R. Myer, K. A. Latorella, J. R. Comstock Jr, The Multi-Attribute Task Battery II (MATB-II) Software for Human Performance and Workload Research: A User's Guide, pp. 1-269, Virginia: Langley Research Center, 2011.

[20] R. Molloy, R. Parasuraman, Monitoring an automated system for a single failure: Vigilance and task complexity effects, Human Factors, Vol. 38, No. 2, pp. 311-322, 1996.

[21] K. Gilliland, R. E. Schlegel, T. E. Nesthus, Workshift and Antihistamine Effects on Task Performance, pp. 1-100, Washington, D.C.: Office of Aviation Medicine, 1997.

[22] P. J. Valk, D. B. Van Roon, R. M. Simons, G. Rikken, Desloratadine shows no effect on performance during 6 h at 8,000 ft simulated cabin altitude, Aviation, space, and environmental medicine, Vol. 75, No. 5, pp. 433‑438, 2004.

[23] J. A. Caldwell, S. Ramspott, Effects of task duration on sensitivity to sleep deprivation using the multi-attribute task battery, Behavior Research Methods, Instruments, & Computers, Vol. 30, No. 4, pp. 651-660, 1998.

[24] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, Vol. 27, No. 3, pp. 379–423, 2001.

[25] Z. Wang, A. Alahmadi, D. C. Zhu, T. Li, Causality Analysis of fMRI Data Based on the Directed Information Theory Framework, IEEE Transactions on Biomedical Engineering, Vol. 63, No. 5, pp. 1002-1015, 2016.

[26] A. N. Ravari, H. D. Taghirad, Loop closure detection by algorithmic information theory: Implemented on range and camera image data, IEEE transactions on cybernetics, Vol. 44, No. 10, pp. 1938-1949, 2014.

[27] H. Jänicke, G. Scheuermann, Visual analysis of flow features using information theory, IEEE Computer Graphics and Applications, Vol. 30, No. 1, pp. 40-49, 2010.

[28] F. Talantzis, An acoustic source localization and tracking framework using particle filtering and information theory, IEEE transactions on audio, speech, and language processing, Vol. 18, No. 7, pp. 1806-1817, 2010.

[29] C. M. Bishop, Pattern recognition and machine learning, 1st ed., New York: Springer, 2006.

[30] C. A. Phillips, D. W. Repperger, R. Kinsler, G. Bharwani, D. Kender, A quantitative model of the human–machine interaction and multi-task performance: A strategy function and the unity model paradigm, Computers in biology and medicine, Vol. 37, No. 9, pp. 1259-1271, 2007.

[31] P. M. Fitts, The information capacity of the human motor system in controlling the amplitude of movement, Journal of experimental psychology, Vol. 47, No. 6, pp. 381, 1954.

[32] W. E. Hick, On the rate of gain of information, Quarterly Journal of Experimental Psychology, Vol. 4, No. 1, pp. 11-26, 1952.

[33] R. Hyman, Stimulus information as a determinant of reaction time, Journal of experimental psychology, Vol. 45, No. 3, pp. 188, 1953.

[34] C. M. Walters, Application of the human-machine interaction model to Multiple Attribute Task Battery (MATB): Task component interaction and the strategy paradigm, MSc Thesis, Wright State University, Dayton, USA, 2012

[35] Operator Functional State Assessment, RTO‑TR‑HFM‑104, North Atlantic Treaty Organization‌, 2004.