تعقیب و اجتناب از عوارض زمین در زمان کمینه بر مبنای همواری دیفرانسیلی

نوع مقاله: مقاله پژوهشی

نویسنده

عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه گیلان

چکیده

در مقاله حاضر، رویکرد جدیدی برای ‏بهینه‌سازی مسیرهای پرواز وسایل هوافضایی به منظور تعقیب و اجتناب از عوارض زمین ارائه می‌گردد. در این رویکرد، مسئله بهینه‌سازی مسیر با استفاده از معادلات حرکت سه‌بعدی در دستگاه مختصات سرعت و در قالب یک مسئله ‏کنترل بهینه کمینه زمان تعریف گردیده و با یک روش مستقیم ترکیبی حل می‎شود. روش حل استفاده شده، ترکیبی از روش‎های هم‎نشانی مستقیم، برنامه‎ریزی غیرخطی، همواری دیفرانسیلی و منحنی‎های بی‎اسپیلاین می‎باشد. در این روش، با استفاده از همواری دیفرانسیلی، معادلات دینامیکی حاکم بر مسئله در کمترین فضای ابعادی ممکن و با حداقل تعداد متغیرهای حالت بیان می‎گردند. همچنین، متغیرهای حالت با منحنی‎های بی‎اسپیلاین مناسب تقریب زده شده و نقاط کنترل این منحنی‎ها، به عنوان متغیرهای بهینه‎سازی گسسته مسئله برنامه‎ریزی غیرخطی در نظر گرفته می‎شوند. با استفاده از رویکرد پیشنهادی، مسیرهای پرواز کمینه زمان برمبنای دینامیک مسئله و قیود فیزیکی و عملیاتی بدست می‎آیند. به دلیل سرعت و دقت بالای حل، از این رویکرد می‎توان برای تولید مسیرهای بهینه برخط در ساختارهای کنترل پیش‎بین مدل استفاده نمود. در این مقاله، برای نشان‎دادن ویژگی‎ها و قابلیت‎های رویکرد پیشنهادی، یک مثال عددی ارائه و حل می‎شود.

کلیدواژه‌ها


عنوان مقاله [English]

Terrain following and avoidance in minimum time based on differential flatness

نویسنده [English]

  • Reza Jamilnia
Department of Mechanical Engineering, University of Guilan, Rasht
چکیده [English]

In this paper, a new approach is proposed to optimize flight trajectories of aerospace vehicles for terrain following and avoidance. In this approach, the problem of trajectory optimization is defined as a minimum-time optimal control problem and is solved by a combined direct method. The used solution method is a combination of direct collocation method, nonlinear programming, differential flatness and B-spline curves. In this method, by using differential flatness, the governing dynamic equations are expressed by the minimum number of state variables in the minimum dimensional space. Also, state variables are approximated by B-spline curves, and control points of these curves are considered as discrete optimization variables of the nonlinear programming problem. By using the proposed approach, the minimum-time flight trajectories are achieved based on the problem dynamic and physical and operational constraints. Because of high solution speed and accuracy, the approach can be used in model predictive control structures for online generation of optimal trajectories. In this paper, a numerical example is presented and solved to demonstrate specifications and capabilities of the proposed approach.

کلیدواژه‌ها [English]

  • terrain following and avoidance
  • minimum-time
  • trajectory optimization
  • direct collocation
  • differential flatness
[1] D. W. Gu, W. Kamal, I. Postletwaite, A UAV waypoint generator, AIAA 1st Intelligent Systems Technical Conference, Illinois, 2004.

[2] K. B. Judd, T. W. McLain, Spline based path planning for unmanned air vehicles, AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001.

[3] M. A. Gill, A. Y. Zomaya, A cell decomposition based collision avoidance algorithm for robot manipulators, Journal of Cybernetics and Systems, Vol. 29, No. 2, pp. 113-135, 1998.

[4] S. Twigg, A. Calise, E. Johnson, 3D Trajectory optimization for terrain following and terrain masking, AIAA Guidance, Navigation, and Control Conference and Exhibit, Colorado, 2006.

[5] I. Khademi, B. Maleki, A. N. Mood, Optimal three dimensional Terrain Following/Terrain Avoidance for aircraft using direct transcription method, Proceedings of the 19th Mediterranean Conference on Control & Automation, Corfu, Greece, IEEE, pp. 254-258, 2011.

[6] R. Kamyar, E. Taheri, Aircraft optimal terrain/threat-based trajectory planning and control, Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, pp. 466-483, 2014.

[7] S. I. Kassaei, A. R. Kosari, Aircraft trajectory planning with an altitude-bound in terrain-following flight, Modares Mechanical Engineering, Vol. 17, No. 12, pp. 135-144, 2018. (in Persian)

[8] A. Kosari, H. Maghsoudi, A. Lavaei, Optimal online trajectory generation for a flying robot for terrain following purposes using neural network, Journal of Aerospace Engineering, Vol. 0, No. 3, pp. 1-18, 2015.

[9] S. J. Asseo, Terrain following/terrain avoidance path optimization using the method of steepest descent, Proceedings of the Aerospace and Electronics Conference, Dayton OHIO, IEEE, pp. 1128-1136, 1988.

[10] R. Jamilnia, Development of an Online Combined Method for Trajectory Optimization, PhD Thesis, Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, 2012. (in Persian)

[11] O. VonStryk, Numerical Solution of Optimal Control Problems by Direct Collocation, R. Bulirsch, A. Miele, J. Stoer, K. H. Well (Eds.), Optimal Control - Calculus of Variations, pp. 129-143, Basel: Birkhauser, 1993.

[12] J. T. Betts, Survey of numerical methods for trajectory optimization, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, pp. 193-207, 1998.

[13] R. Esmaelzadeh, R. Jamilnia, A. Adami, Optimal guidance of a reentry vehicle using a combinational method, Journal of Aerospace Mechanics, Imam Hossein University, Vol. 12, No. 4, pp. 35-48, 2016. (in Persian)

[14] M. Bahrami, R. Jamilnia, A. Naghash, Trajectory optimization of space manipulators with flexible links using a new approach, International Journal of Robotics, K. N. Toosi University of Technology, Vol. 1, No. 1, pp. 48-55, 2009.

[15] R. Jamilnia, Optimal trajectory design for soft landing on the Moon by using differential flatness, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 9-19, 2017. (in Persian)

[16] H. Seywald, Trajectory optimization based on differential inclusion, Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, pp. 480-487, 1994.

[17] M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems, International Journal of Control, Vol. 61, No. 6, pp. 1327-1361, 1995.

[18] C. De Boor, A Practical Guide to Splines, pp. 131-170, New York: Springer-Verlag, 2001.

[19] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edittion, pp. 91-218, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2010.

[20] A. Wächter, An Interior Point Algorithm for Large Scale Nonlinear Optimization with Applications in Process Engineering, PhD thesis, Carnegie Mellon University, Pennsylvania, 2002.