بررسی اثر پارامترهای جریان بر توان خروجی میکروتوربین واحد توان کمکی بالگرد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری

2 دکترای هوافضا / دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری

چکیده

در این پژوهش دمای داخل محفظه احتراق و اندازه­گیری توان خروجی میکروتوربین Solar T-62T-2A در شرایط طرح و خارج از طرح با استفاده از نرم­افزار تجاری انسیس فلوئنت مورد مطالعه قرار گرفته است. به منظور تحلیل شرایط عملکردی موتور، تغییرات دبی هوای ورودی و دمای ورودی به کمپرسور و دبی جرمی سوخت ورودی به محفظه بررسی شده­اند. در روش عددی جهت تحلیل پدیده احتراق، جریان بصورت سه بعدی، پایا، تراکم ناپذیر، لزج، آشفته و همراه با تشعشع در نظر گرفته شده است. در مدل­سازی احتراق، از مدل احتراقی غیرپیش­ آمیخته و برای اعمال اثرات آشفتگی، از مدل کااپسیلن  قابل تحقق استفاده شده است که در مسائل احتراقی، همخوانی خوبی با نتایج تجربی نشان می­دهد. مهم­ترین خصوصیت مدل استفاده شده این است که محدودیت‌های ریاضی مربوطه را در مدل نمودن تنش­های رینولدزی اقناع کرده و با فیزیک جریان آشفته سازگار و دارای دقت بیشتری بوده و مدل­سازی با آن واقعی­تر است و به همان نسبت هزینه محاسباتی بالاتری نیز دارد. بنابراین درک بهتری از فرایندهای فیزیکی حاصل می­شود. نتایج بدست آمده از حل عددی محفظه احتراق با نتایج ارائه شده توسط شرکت سازنده اعتبار­سنجی شده­ اند. نتایج حاصل نشان می­ دهد، به ازای دبی­های سوخت کمتر از 0/0125 کیلوگرم بر ثانیه، افزایش دمای هوای ورودی به کمپرسور منجر به افزایش توان اما به ازای دبی­ های بالاتر از آن منجر به کاهش توان می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the stream parameter on output power of helicopter’s APU

نویسندگان [English]

  • Mehdi Aghnia 1
  • Mohammad Aelaei 2
1 PhD Candidate / Sattari Research Center, Sattari University of Science and Technology
2 Aerospace PhD / Aerospace Faculty, Sattari University of Science and Technology
چکیده [English]

Today’s the need of industries to the gas turbine implies the study more than ever. In this study, for better understanding of gas turbine combustors, the research begins with an introduction to the equipment of gas turbines and then the numerical computation of the two types of combustors has been checked; the first is annular type and the second is can type.  Most of these engines in aviation industries in Iran get utilized in producing electric power. To investigate the term of operation of the engine, the variation of mass flow and out flow of gas to the compressor and mass discharge of the fuel to the combustor were analyzed. Therefore the investigation used CFD to analyze the temperature contour of combustors and the flow envisage as three dimensions, stable, compressible, viscose, agitated with radiation in combustion.in order to the modeling the combustion process were used the non-premixed combustion model with liquid fuel. After that the fluent software 16.1, the injection and evaporation of the fuel were modeled. The results were compared to the actual results of the SOLAR T62T-2A which were introduced by the manufacturer. For fuel flows less than 0.0125 kilograms per second, increasing inlet air temperature for the compressor causes increase of power but higher fuel flows from it causes a reduction in power.

کلیدواژه‌ها [English]

  • Gas turbines
  • Solar T-62T-2A Micro-Turbine
  • numerical simulation
  • Mass Flow
  • Output power
[1] A. Aneel, Guide for Calculation of the Tariffs for Energy Sale– Practice Tariffs, www.aneel.gov.br, 2003.

[2] P. Gosselin, S. DeChamplain, D. Kretschmer, Three Dimensional CFD Analysis of a Gas Turbine Combustor, 36th AIAA / ASME / SAE / ASEE Joint Propulsion Conference and Exhibit, pp 11, Huntsville, Alabama, 2000

[3] D. Lee, C. Yeh, Y. Tsuei, W. Jiag, Y. Chung, Numerical Simulation of Gas Turbine Combustor Flows, 26th AIAA / ASME / SAE / ASEE Joint Propulsion Conference, Orlando, FL, USA, July 16 – 18, 1990.

[4] D.A. Nickolaus, D.S. Croker, C.E. Smith, Development of a Lean Direct Fuel Injector for Low Emission Aero Gas Turbine, ASME Turbo Expo: Power for Land, Sea, and Air, 2002.

[5] Y. Levy, V. Erenburg, Y. Goldman, V. Sherbaum, and V. Ovcharenko. CFD assisted Design of Micro GT Combustor. In ASME Turbo Expo 2009: Power for Land, Sea, and Air, pp. 383-392. American Society of Mechanical Engineers Digital Collection, 2009.

[6] A.Guessab, A. Aris, T. Benabdallah, and N. Chami, Effect of Fuels on Gas Turbine Can-Type Combustor using CFD Code. Applied Numerical Mathematics and Scientific Computation, 2014.

[7] J.W. Allen, Low Nox Burner Designs, Proceedings of the American Power Conference, Vol. 60 – II, pp 869 – 874, 1998.

[8] T.A. Melick, et al., Burner Modifications for Cost Effective Nox Control, Proceedings of the American Power Conference, Vol. 60 – II, pp 855 – 860, 1998.

[9] G. Yadigaroglu, et al., Numerical and Experimental Study of Swirling Flow in a Model Combustor, Heat Mass Transfer Journal, Vol. 41, No. 11, pp. 1485-1497, 1998.

[10] T. Wakabayashi, et al., Performance of a Dry Low Nox Gas Turbine Combustor Designed with a New Fuel Supply Concept, Engineering for Gas Turbines and Power Journal, ASME, Vol. 124, pp. 771-775, 2002

[11] M. Aligoodarz, Numerical simulation of SGT-600 of gas turbine combustor and flow field under operation condition, Journal of modeling in engineering, Vol. 10, No. 31, pp. 25-35, 2013.

[12] M, Aghnia, M. Sedighi, Identify defects and optimize Micro- turbine combustion chamber numerically, Master Thesis in aerospace engineering, Shahid Sattari air university, Tehran, 2014, (in Persian)

[13] A.H. Lefebvre, Gas Turbine Combustion, Mc-GrawHill Book Company, New York, USA, 1987.

[14] T.A. Melick, et al., Burner Modifications for Cost Effective NOx Control, Proceedings of the American Power Conference, Vol. 61 – I, pp 478 – 482, 1999.

[15] L. Vandebroek, H. Winter, J. Berghmaus, Numerical Study of the Auto Ignition Process in Gas Mixtures Using Chemical Kinetics, Heat Mass Transfer Journal, 2003.

[16] E.J. Fuller, C.E. Smith, CFD Analysis of a Research Gas Turbine Combustor Primary Zone, 30th AIAA / ASME / SAE / ASEE Joint Proceedings of the 3rd IASME/WSEAS Int. Conf. on Heat Transfer, Thermal Engineering And Environment, Corfu, Greece, August 20-22, pp. 317-325, 2005.

[17] A.J. Hamer, R.J. Roby, CFD Modeling of a Gas Turbine Combustor Using Reduced Chemical Kinetic Mechanisms, AIAA 1997 – 3242, 33rd AIAA ASME / SAE / ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, USA, July 6 – 9, 1997.

[18] L.Y. Jiang, I. Campell, A Critical Evaluation Of Nox Modeling In A Model Combustor, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Vienna, Austria, GT 2004-53641, June 14-17, 2004.

[19] I.G. Koutsenko, S.F. Onegin, A.M. Sipatov, Application of CFD-Based Analysis Technique For Design And Optimization of Gas Turbine Combustors, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Vienna, Austria, GT 2004-53398, June 14-17, 2004.

[20] N.J.A. Lyckama, E.M.J. Komen, R.T.E. Hermanns, L.P.H. Goey, M.C. Van Beek, A.J.L. Verhage, CFD Modeling Of Biogas Co firing In A Gas Turbine, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Amsterdam, The Netherlands, GT 2002-30103, June 03-06, 2002.

[21] J. Parente, G.M.V. Anisimov, G. Croce, Micro Gas Turbine Combustion Chamber Design And CFD Analysis, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Vienna, Austria, GT 2004-54247, June 14-17, 2004.

[22] R. Dudebout, B. Reynolds, M.H. Khosro, Integrated Process for CFD Modeling and Optimization of Gas Turbine Combustors, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Vienna, Austria, GT 2004-54011, June 14-17, 2004.

[23] M.K. Lai, R.S. Reynolds, J. Armstrong, CFD-Based, Parametric, Design Tool For Gas Turbine Combustors From Compressor Deswirl Exit To Turbine Inlet, Proceedings of ASME Turbo Expo, Power for Land, Sea and Air, Amsterdam, The Netherlands, GT 2002-30090, June 03-06, 2002.

[24] H.S. Alencar, H.F. Villanova, M. Antonio, N. Rosa, Analysis of Flame Behavior in Small Combustion Chambers Using CFD, Proceedings of COBEM 2005, 18th International Congress of Mechanical Engineering by ABCM, Ouro Preto, Brazil, November 6-11, 2005

[25] AEA Technologies, CFX V. 5.7 Tutorial, www.ansys.com/cfx, 2005.

[26] P. Gosselin, S.K. DeChamplain, D. Kretschmer, Three Dimensional CFD Analysis of a Gas Turbine Combustor, 36th AIAA / ASME / SAE / ASEE Joint Propulsion Conference and Exhibit, pp 11, Huntsville, Alabama, 2000

[27] N.K. Rizk, H.C. Monglia, Three dimensional Analysis of Gas Turbine Combustor, Jounal of Propulsion and Power, Vol. 7, No. 1, 1991.

[28] N.G. Shah, New Method of Computation of Radiant Heat Transfer in Combustion Chambers, PhD Thesis, University of London, UK, 1979.

[29] Solar, Organizational, DS and GS maintaince manual auxiliary power unit, CH-47 Helicopters, Department of the Army, 1968.

[30] R.E. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, Heat Mass Transfer Journal, 1997.

[31] P.J. Stuttaford, Preliminary Gás Turbine Combustion Design Using a Network Approch, PhD Thesis, Cranfield University, USA, 1997.