کنترل بهینه غیرخطی یک وسیله هوایی با در نظر گرفتن مدل غیرخطی موتور پیشران

نوع مقاله : مقاله پژوهشی

نویسندگان

عضو هیات علمی / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر

چکیده

این مقاله به مدلسازی دینامیکی و کنترل بهینه غیرخطی یک وسیله هوایی با در نظر گرفتن مدل غیرخطی موتور پیشران می‌پردازد. بدین منظور معادلات دینامیک پرواز غیرخطی وسیله هوایی با در نظر گرفتن روابط غیرخطی حاکم بر موتور پیشران آن استخراج می‌شود. رابطه نیروی پیشرانش و مصرف سوخت موتور هوازی بیان و با معادلات دینامیک غیرخطی وسیله پرنده ترکیب می‌شود. با بیان فرمولاسیون کنترل بهینه غیرخطی وابسته به حالت، دینامیک غیرخطی جسم هوایی به عنوان معادلات قیدی مسئله در نظر گرفته شده و تابع هزینه شامل متغیرهای حالت و ورودی های کنترلی در لحاظ می‌شود. سپس تابع همیلتونین مسئله کنترل بهینه تشکیل و معادلات بهینگی بدست می‌آید. با حل عددی معادلات بهینگی، پارامترهای متعددی نظیر زاویه مسیر پرواز، عدم قطعیت، زاویه حمله و ضرایب وزنی کنترل بهینه در نظر گرفته شده و شبیه‌سازی متنوعی ارایه می‌شود. نتایج نشان می‌دهد، با افزایش زاویه حمله، زمان و تلاش کنترلی سامانه افزایش می‌یابد. با تغییر ضرایب وزنی مسئله کنترل بهینه، مسیرهای بهینه کنترلی متعددی ایجاد و افزایش ضرایب وزنی ورودی باعث کاهش مصرف سوخت بهینه می‌شود. مشاهده می‌شود که با تغییر پارامتر عدم قطعیت در مدلسازی، پاسخ گذرا سیستم تغییر کرده اما در نهایت روش کنترل بهینه توانمند در ردیابی مسیر مطلوب بوده است. با تغییر شرایط اولیه مختلف و پارامترهای مختلف، کنترل بهینه غیرخطی سیستم به خوبی انجام می‌شود که نشان‌دهنده کارایی روش پیشنهادی در مدلسازی و کنترل غیرخطی سیستم است.

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear optimal control of an aerial vehicle with consideration of nonlinear Modeling of thruster engine

نویسندگان [English]

  • Mostafa Nazemi Zade
  • Alireza Babaei
Department of Mechanical engineering, Malek-Ashtar University, Iran
چکیده [English]

This article deals with dynamic modeling and nonlinear optimal control of an aerial vehicle taken into account nonlinear modeling of its thruster engine. To do this, nonlinear flight dynamic equations of the aerial vehicle are derived considering nonlinear equations of the thruster engine. A relation between the thrusting force and the fuel consumption of the air-breathing engine is stated and coupled with the nonlinear dynamic equations of the vehicle. Presenting the formulation of the state-dependent nonlinear optimal control, the nonlinear dynamic relations of the aerial vehicle are considered as constraint equations of the optimal control and a cost function including state and input variables is defined. Then, the Hamiltonian function of the optimal control problem is formed and optimality equations obtained. By numerical solving of the problem, various parameters like as the path angle, uncertainties, attack angle and weighting coefficients of the optimal control are considered and several simulations are presented. The results show that increasing the attack angle leads to increasing of the control time and effort of the system. Also, changing the weighting coefficients lead to various optimal paths as increasing the input weighting coefficient decreases the fuel consumption. It is seen by changing the uncertainty parameter of the model, transient response is changed but finally the optimal control method is able to track the desired path. Furthermore, by changing initial conditions and parameters, the nonlinear optimal control of the system is effectively performed which indicates the priority of the proposed method

کلیدواژه‌ها [English]

  • aerial vehicle
  • thruster engine
  • nonlinear dynamics
  • optimal control
  • state-dependent
[1] Saberi Tavakkoli, M., Modeling and Simulation of a Ballistic Launch Vehicle in ECEF and Navigation Coordinate Systems. Journal of Technology in Aerospace Engineering, Vol. 1, No. 2, pp. 17-26, 2017.
[2] Mobini Bidgoli, M., Sadati, S., Flight control using adaptive dynamic inversion. Aerospace Knowledge and Technology Journal, Vol. 5, No.1, pp. 7-16, 2016. (in Persian).
[3] Havaei, M., Ebrahimi, M., Guidance of solid propellant missile based on functional guidance. Aerospace Knowledge and Technology Journal, Vol. 7, No. 2, pp. 67-79, 2018. (in Persian).
[4] T. Espinoza-Fraire, A. Dzul, F. Cortés-Martínez, W. Giernacki, Real-time implementation and flight tests using linear and nonlinear controllers for a fixed-wing miniature aerial vehicle (MAV), International Journal of Control, Automation and Systems, Vol. 16, No. 1, pp. 392-396, 2018.
[5] Azimov, J. Allen, Analytical model and control solutions for unmanned aerial vehicle maneuvers in a vertical plane. Journal of Intelligent & Robotic Systems, Vol. 91, No. 3-4, pp. 725-733, 2018.
[6] Mazare, E. davoodi, M. Taghizadeh, M. pourgholi, Optimal Control Based on Minimum-Energy Trajectory Planning of a Quadrotor. Amirkabir Journal of Mechanical Engineering, 2019. (in Persian).
[7] M. Levin, A.A. Paranjape, M. Nahon, Agile maneuvering with a small fixed-wing unmanned aerial vehicle. Robotics and Autonomous Systems, Vol. 116, pp. 148-161, 2019.
[8] Nazemizadeh, H.N. Rahimi, K.A. Khoiy, Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task, Frontiers of Mechanical Engineering, Vol. 7, No. 1, pp. 23-28, 2012.
[9] Nazemizadeh, H.R. Nohooji, An analysis of the finite element method applied on dynamic motion and maximum payload planning of flexible manipulators. Transactions of FAM ;: //wzENA, Vo. 39, No. 4, pp. 15-22, 2016.
[10] H. Korayem, M. Nazemizadeh, H.R. Nohooji, Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 36, No. 1, pp. 221-232, 2014.
[11] R. Nekoo, Nonlinear closed loop optimal control: a modified state-dependent Riccati equation. ISA transactions, Vol. 52, No. 2, pp. 285-290, 2013.
[12] Geranmehr, S.R. Nekoo, Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. Ocean Engineering, Vol. 96, pp. 248-257, 2015.
[13] Mirzaeinejad, A.M. Shafei, Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches. Robotica, Vol. 36, No. 10, 1551-1570, 2018.
[14] S. Fry, A century of ramjet propulsion technology evolution. Journal of propulsion and power, Vol, 20, No. 1, pp. 58-72, 2004.
[15] G. Prisell, The Feasibility of the Scramjet; an Analysis Based on First Principles. In Proceedings of the 25th International Congress of the Aeronautical Sciences, pp. 1-14, 2006.
[16] Rudnuck, Momentum relations in propulsive ducts, Journal of the Aeronautical Sciences, Vol. 14, No. 9, pp. 540-544. 1947.
[17] Tayara, Investigations of Ramjets: technical report, Delft University, 2000.
[18] W. Marsh, Introduction to the Analysis of Supersonic Ramjet Power Plants. Journal of Jet Propulsion, Vol. 24, No. 3, pp. 155-161, 1954.
[19] LeMoyne, Fundamental Analysis of a Tandem LH2-LOX Rocket-Ramjet Propulsion System. In AIAA SPACE 2009 Conference & Exposition, pp. 6658-6662, 2009.
[20] Goldstein, A. Calise, Optimal propuslsion/guidance analysis of ramjet powered air-to-air missiles. IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 644-647, 2002.
[21] R Cloutier, P.H. Zipfel, Hypersonic guidance via the state-dependent Riccati equation control method, Proceedings of the IEEE International Conference on Control Applications, pp. 219-224, 1999.
[22] Groves, A. Serrani, S. Yurkovich, M. Bolender, D. Doman, Anti-windup control for an air-breathing hypersonic vehicle model. AIAA conference and exhibit on guidance, navigation, and control, pp. 6557-6562, 2005.
[23] Z. Nejad, M. Jabbari, M. Ghannad, A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers, The Scientific World Journal, 2014.
[24] H. Jalali, B. Shahriari B, Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method, Mathematical Problems in Engineering, 2018.
[25] Li, Y. Si, L. Wu, X. Hu, Z. Wang, H. Gao, Fault-tolerant output tracking control for a flexible air-breathing hypersonic vehicle. International Symposium on Systems and Control in Aeronautics and Astronautics, pp. 1059-1064, 2010.
[26] Guo, J. Chang, J. Guo, J. Zhou, Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer. ISA transactions, Vol. 77, pp. 20-29, 2018.
[27] Hu, Y. Meng, C. Wang, Y. Zhang, Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities, Aerospace Science and Technology, Vol. 73, pp. 289-299, 2018.
[28] T. McRuer, D. Graham, I. Ashkenas, Aircraft dynamics and automatic control. Princeton University Press, 2014.
[29] H. Blakelock, Automatic control of aircraft and missiles. John Wiley & Sons, 1991.
[30] Küchemann, J. Weber, Aerodynamics of propulsion, McGraw-Hill, Vol. 2, 1953.
[31] J.R. Cloutier, J.C. Cockburn, The state-dependent nonlinear regulator with state constraints. Proceedings of the IEEE in American Control Conference, pp. 390-395, 2001.
[32] R.E. Beiki and M. Irani-Rahaghi, Optimal Trajectory Planning of a Six DOF Parallel Stewart Manipulator. International Conference on Robotics and Mechatronics, pp. 120-125, 2016.
[33] Korayem, M. H. and Nekoo, S. R., Controller design of cooperative manipulators using state-dependent Riccati equation. Robotica, Vol. 36, No. 4, pp. 484-515, 2018