مطالعه عددی اثرات کنترل جریان به وسیله جت مولد گردابه پالسی بر جریان آشفته روی یک ایرفویل

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

چکیده

در این مقاله کنترل جدایش جریان به وسیله عملگر جت مولد گردابه پالسی روی یک ایرفویل با مقطع NASA SC(2)-0714 در جریان با رینولدز 106×1، به صورت عددی مورد بررسی قرار گرفته است. جریان جت پالسی با فرکانس 40 هرتز و سیکل کاری 50 درصد از یک شکاف خارج می‌شود. شبیه‌سازی در زوایای حمله 14، 16 و 18 درجه در حوالی زاویه واماندگی انجام شده است. برای درک بهتر از چگونگی عملکرد جت مولد گردابه پالسی، اثرات ناشی از جت هوای ناپایا روی مشخصات لحظه‌ای و متوسط‌گیری زمانی جریان استخراج شده و تغییرات فیزیکی و الگوی گردابه‌ای جریان روی سطح ایرفویل مطالعه شده است. نتایج نشان می‌دهد تحریک جریان توسط عملگر جت پالسی در زاویه حمله 14 و 16 درجه، جدایش جریان را با موفقیت به تأخیر انداخته است. در نتیجه راندمان آیرودینامیکی مقطع بال به ترتیب 8/14 و 2/33 درصد افزایش می‌یابد. همچنین در زاویه حمله 18 درجه که در منطقه پسا واماندگی قرار دارد، تحریک کنترلی، جدایش جریان بزرگ روی ایرفویل را حذف کرده و جریان در قسمت قابل توجهی از وتر ایرفویل، به سطح ایرفویل متصل می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of the flow control by a pulsed vortex generator jet on the turbulent flow of an airfoil

نویسنده [English]

  • Soheila Abdolahipour
Aerospace Research Institute
چکیده [English]

In this article, the flow separation control by the vortex generator jet actuator on an airfoil with NASA SC(2)-0714 cross-section in the flow with Reynolds 1×106 has been numerically investigated. The pulsed jet has a frequency of 40 Hz and a duty cycle of 50%. The simulation has been done at the angles of attack of 14, 16 and 18 degrees where the flow separation on the airfoil surface starts and then comes to a stall condition. In this research, in order to better understand how the pulsed vortex generator jet works, the effects of the unsteady jet on the instantaneous and time-averaged flow characteristics are extracted and the vortices pattern of the flow on the airfoil surface has been investigated. The results indicate that the actuation effectively delays the flow separation at the angles of attack of 14 and 16 degrees. As a result, the aerodynamic efficiency of the wing section increases by 14.8% and 33.2%, respectively. At the angle of attack of 18 degrees, which is in the post-stall condition, the actuation eliminates the massive flow separation and the flow attaches to the surface in a significant part of the airfoil chord.

کلیدواژه‌ها [English]

  • Flow control
  • Pulsed vortex generator jet
  • Numerical simulation
  • Unsteady turbulent flow
  • Aerodynamic efficiency
  • Instantaneous and time-averaged characteristics
[1] Gad-el-Hak, M., Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, New York, 2006.
[2] Shams Taleghani, A., Shadaram, A., Mirzaei, M., Experimental Investigation of Active Flow Control for Changing Stall Angle of a NACA0012 Airfoil Using Plasma-Actuator, Fluid Mechanics and Aerodynamics Journal, Vol. 1, pp. 89-97, 2012. (in Persianفارسی )
[3] Radespiel, R., Burnazzi, M., Casper, M., and Scholz, P., Active Flow Control for High Lift with Steady Blowing, The Aeronautical Journal, Vol. 120, No. 1223, pp. 171–200, 2016.
[4] Mirzaei, M., Taleghani, A., Shadaram, A., Experimental study of vortex shedding control using plasma actuator, Applied Mechanics and Materials, Vol. 186, pp. 75-86, 2012.
[5] Pauley, W. R. and Eaton, J. K., Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer, AIAA journal, Vol. 26, No. 7, pp.816-823, 1988.
[6] Fiedler, H.E. and Fernholz, H.H., On Management and Control of Turbulent Shear Flows, Progress in Aerospace Sciences, Vol. 27, No. 4, pp.305-387, 1990.
[7] Godard, G. and Stanislas, M., Control of a Decelerating Boundary Layer. Part 1: Optimization of Passive Vortex Generators, Aerospace Science and Technology, Vol. 10, No. 3, pp. 181-191, 2006.
[8] Godard, G. and Stanislas, M., Control of a Decelerating Boundary Layer. Part 3: Optimization of Round Jets Vortex Generators, Aerospace science and technology, Vol. 10, No. 6, pp. 455-464, 2006.
[9] Kostas, J., Foucaut, J.M. and Stanislas, M., The Effects of Pulse Frequency and Duty Cycle on the Skin Friction Downstream of Pulsed Jet Vortex Generators in an Adverse Pressure Gradient Turbulent Boundary Layer, Aerospace Science and Technology, Vol. 13, No. 1, pp. 36-48, 2009.
[10] Aley, K.S., Guha, T.K. and Kumar, R., Active Flow Control of a High-Lift Supercritical Airfoil with Microjet Actuators, AIAA Journal, Vol. 58, No. 5, pp. 2053-2069, 2020.
[11] Pour Razzaghi, M.J., Xu, C., Liu, Y. and Masoumi, Y., The Effects of Minute Vortex Generator Jet in a Turbulent Boundary Layer with Adverse Pressure Gradient, Science Progress, Vol. 104, No. 2, p.00368504211023294, 2021.
[12] Chanzy, Q., Garnier, E. and Bur, R., Optimization of a Fluidic Vortex Generator’s Control in a Transonic Channel Flow, AIAA Journal, Vol. 58, No. 12, pp.5216-5227, 2020.
[13] Fallahian; a., Shams Taleghani; A., Esmailpour, K., Three-Dimensional Numerical Study of the Effect of Blowing Angle on the Aerodynamic Characteristics of a Wing Section with NACA 0012 Airfoil, Aerospace Knowledge and Technology Journal, 12, 1, 2023. (in Persianفارسی )
[14] Godard, G., Foucaut, J.M., & Stanislas, M., Control of a Decelerating Boundary Layer. Part 2: Optimization of Slotted Jets Vortex Generators, Aerospace Science and Technology, Vol. 10, No. 5, pp. 394-400, 2006.
[15] Zhang, X. and M.W., Collins, Measurements of a Longitudinal Vortex Generated by a Rectangular Jet in a Turbulent Boundary Layer, Physics of Fluids, Vol. 9, No. 6, pp. 1665-1673, 1997.
[16] Abdolahipour, S., Mani, M., Shams Taleghani, A., Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics, Physica Scripta, Vol. 96, No. 12, 2021.
[17] McManus, K., Joshi, P., Legner, H. and Davis, S., Active control of aerodynamic stall using pulsed jet actuators, The 26th AIAA Fluid Dynamics Conference, p. AIAA 95- 2187, California, 1995.
[18] Tilmann, C.P., Langan, K.J., Betterton, J.G. and Wilson, M.J., Characterization of Pulsed Vortex Generator Jets for Active Flow Control, Air Force Research Laboratory AFRL-VA-WP-TP-2003- 336, Wright-Patterson Air Force Base, 2003.
[19] Ortmanns, J., Kähler, C.J. and Weg, B., Investigation of Pulsed Actuators for Active Flow Control Using Phase Locked Stereoscopic Particle Image Velocimetry, In International Symposium on Applications of Laser Techniques in Fluid Mechanics, Vol. 12, July, 2004.
[20] Scholz, P., Ortmanns, J., Kähler, C. J. and Radespiel, R., Influencing the Mixing Process in a Turbulent Boundary Layer by Pulsed Jet Actuators, In New Results in Numerical and Experimental Fluid Mechanics, V, Vol. 92, pp. 265-272, Berlin, 2006.
[21] Seifert, A., Darabi, A., and Wyganski I.J., Delay of Airfoil Stall by Periodic Excitation, Journal of Aircraft, Vol. 33, No. 4, pp. 691-698, 1996.
[22] Greenblatt D, Wygnanski I.J., The Control of Flow Separation by Periodic Excitation, Progress in aerospace Sciences, Vol. 36, No. 7, pp. 487–545, 2000.
[23] Sellers, W., Jones, G., and Moore, M., Flow Control Research at NASA Langley in Support of High-Lift Augmentation, Biennial International Powered Lift Conference and Exhibit, p. AIAA 2002-6006, Virginia, 2002.
[24] Seifert, A., Greenblatt, D. and Wygnanski, I.J., Active Separation Control: an Overview of Reynolds and Mach Numbers Effects, Aerospace Science and Technology, Vol. 8, No. 7, pp. 569-582, 2004.
[25] Bernardini, C., Benton, S.I., Chen, J.P., and Bons, J.P., Pulsed Jet Laminar Separation Control Using Instability Exploitation, AIAA Journal, Vol. 52, No. 1, pp. 104–115, 2014.
[26] Abdolahipour, S., Mani, M., Shams Taleghani, A., Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator, Flow, Turbulence and Combustion, Vol. 109, pp. 65–100, 2022.
[27] Najafi, Ehsan, and Soheila Abdolahipour., Shams Taleghani, A., Numerical Study of the Effects of Excitation Frequency of Synthetic Jet Actuator on Aerodynamic Performance of a Supercritical Airfoil, Aerospace Knowledge and Technology Journal, Vol. 11, No. 1 2022.
[28] Shams Taleghani, A., Shadaram, A., Mirzaei, M., Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil, IEEE Transactions on Plasma Science;Vol. 40, No. 5, pp. 1434-1440, 2012.
[29] Taleghani, A., Shadaram, A., Mirzaei, M., Experimental investigation of geometric and electrical characteristics by measurements of the induced flow, Modares Mechanical Engineering, Vol. 12, No. 5, pp. 132- 145, 2012. (in Persianفارسی )
[30] Shams Taleghani, A., Shadaram, A., Mirzaei, M., Effects of duty cycles of the plasma actuators on improvement of the pressure distribution over NLF0414 airfoil, Modares Mechanical Engineering Journal, Vol. 12, No. 1, pp. 106-114, 2012. (in Persianفارسی )
[31] Abdolahipour S, Mani M, Shams Taleghani A., Experimental Investigation of Flow Control on a High-Lift Wing Using Modulated Pulse Jet Vortex Generator, Journal of Aerospace Engineering, (ASCE) Vol. 35, Issue 5, 2022.
[32] Najafi, E., Abdollahipour, S., Shams Taleghani, A., Investigation of synthetic jet actuator position in delaying separation of a supercritical airfoil, Journal of Aeronautical Engineering, Volume 24, Issue2, pp. 83-96, 2022.
[33] NASA Technical Memorandum 81912 Low-Speed Aerodynamic Characteristics of a 14-Percent-Thick NASA Phase 2 Supercritical Airfoil Designed for a Lift Coefficient of 0.7.
[34] Schlichting, H., Boundary Layer Theory, McGraw-Hill Book Company, New York, 1987.
[35] Radespiel, R., Burnazzi, M., Casper, M., and Scholz, P., Active Flow Control for High Lift With Steady Blowing, The Aeronautical Journal, Vol. 120, No. 1223, pp. 171–200, 2016.