بررسی تاثیر نانوذرات در جریان آشفته یک لوله با شار حرارتی ثابت با رویکرد اویلری-لاگرانژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهیدرجایی، تهران

2 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهیدرجایی، تهران

چکیده

در این مطالعه با استفاده از روش دینامیک سیالات محاسباتی تاثیر کسر حجمی، قطر ذرات در بازه عدد رینولدز 10 الی 100 هزار به روش حجم محدود و رویکرد اویلری-لاگرانژی برای دو حالت هندسه دو بعدی و سه بعدی در یک لوله بررسی شده است. همچنین تأثیر نیروی ترموفورس و براونی بر عدد ناسلت بررسی شده است. نتایج بدست آمده برای سه حالت با نیروی ترموفورس، با نیروی براونی و در غیاب این دو نیرو تا رینولدز 60 هزار با تقریب خوبی بر نتایج آزمایشگاهی منطبق بود. تاثیر نیروها و تفاوت اعداد ناسلت مربوطه از رینولدز بالای 60 هزار قابل مشاهده است. برای بررسی اضافه کردن نانوذره به عملکرد سیال پایه، ضریب عملکرد حرارتی تعریف شده است. نتایج نشان می‌دهد با افزودن نانو ذرات ضریب عملکرد حرارتی افزایش یافته به طوری که به عنوان مثال در رینولدز 60 هزار ضریب عملکرد برای کسر حجمی2،4 و 6درصد به ترتیب برابر 1/08، 1/22 و 1/6 است و با افزایش قطر نانوذرات 40،30،20،10 نانومتر به ترتیب به صورت 1/21 ، 1/13، 1/11، 1/09 کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of nanoparticles in the turbulent flow of a tube with a constant heat flux with the Eulerian-Lagrangian approach

نویسندگان [English]

  • Atie Farrokh 1
  • Miralam Mahdi 2
1 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran
2 Mechanical Engineering Department, Shahid Rajaee University, Tehran
چکیده [English]

In this study, using Fluent version 2021 software, to investigate the effect of volume fraction, particle diameter in the Reynolds number range of 10,000 to 100,000 using finite volume method and Eulerian-Lagrangian approach for two-dimensional and three-dimensional geometry. The next one is done in a 1 meter tube. Also, the application of thermophoresis and Brownian force and its effect on Nusselt number results were investigated. The data related to all three modes of thermophores and Brownian force and in the absence of these two forces up to Reynolds 60 thousand were in good approximation with the experimental results and the effect of the forces and the difference of the respective Nusselt numbers from Reynolds above 60 thousand can be seen. The results show that with the addition of nanoparticles, the thermal performance coefficient is increased, and the size of the diameter of the nanoparticles and the volume fraction have a significant effect on this performance. The results were validated with experimental values and showed good agreement.

کلیدواژه‌ها [English]

  • Heat transfer
  • nanofluid
  • Eulerian-Lagrangian
  • turbulence
[1] Webb, R.L. Principles of Enhanced Heat Transfer; John Wiley&Sons, Inc.: New York, NY, USA, 1994.
[2] Mousa, M.H.; Miljkovic, N.; Nawaz, K. Review of heat transfer enhancement techniques for single phase flows. Renew. Sust.Energ. Rev, 137, 110566, 2021.
[3] Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A review on thermophysical properties of nanofluids and heat transfer applications.
Renew. Sust. Energ. Rev. 74, 638–670, 2017.
[4] Angayarkanni, S.A.; Philip, J. Review on thermal properties of nanofluids: Recent developments. Adv. Colloid Interface Sci. 225, 146–176, 2015.
[5] Ilyas, S.U.; Pendyala, R.; Marneni, N. Stability of nanofluids. Topics in Mining, Metallurgy and Materials Engineering. In Engineer-
ing Applications of Nanotechnology. From Energy to Drug Delivery; Korada, V.S., Hamid, N.H.B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017.
[6] Abdullah, M.; Malik, S.R.; Iqbal, M.H.; Sajid, M.M.; Shad, N.A.; Hussain, S.Z.; Razzaq, W.; Javed,Y.Sedimentation and stabilization of nano-fluids with dispersant. Colloids Surf. A Physicochem. Eng. Asp. 554, 86–92, 2018.
[7] Kamyar, A.; Saidur, R.; Hasanuzzaman, M. Application of Computational Fluid Dynamics (CFD) for nanofluids. Int. J. Heat Mass
Transf. 55, 4104–4115, 2012.
[8] Kumar, S.; Chakrabarti, S. A Review: Enhancement of Heat Transfer with Nanofluids. Int. J. Eng. Res. Technol. 3, 549–557, 2014.
[9] Kakaç, S.; Pramuanjaroenkij, A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids-
A state-of-the-art review. Int. J. Therm. Sci. 100, 75–97, 2016.
[10] Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Taylor, R.A.;Niazmad, H.; et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys.Rep. 790, 1–48, 2019.
[11]. Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; aylor, R.A.; Abu-Nada, E.;Rashidi, S.; et al. Recent advances in modeling and simulation of nanofluid flows-Part II: Applications. Phys. Rep. 791,1–59, 2019.
[12] Boertz, H.; Baars, A.J.; Cie ́sli ́nski, J.T.; Smolen, S. Numerical Study of Turbulent Flow and Heat Transfer of Nanofluids in Pipes.
Heat Transf. Eng. 39, 241–251, 2018.
[13] Kristiawan, B.; Santoso, B.; Wijayanta, A.T.; Aziz, M.; Miyazaki, T. Heat Transfer Enhancement of TiO2/Water Nanofluid at
Laminar and Turbulent Flows: A Numerical Approach for Evaluating the Effect of Nanoparticle Loadings. Energies 11, 1584, 2018.
[14] Sajjad, M.; Kamran, M.S.; Shaukat, R.; Zeinelabdeen, M.I.M. Numerical investigation of laminar convective heat transfer of
graphene oxide/ethylene glycol-water nanofluids in a horizontal tube. Eng. Sci. Technol. Int. J. 21, 727–735, 2018.
[15] Minea, A.A.; Buonomo, B.; Burggraf, J.; Ercole, D.; Karpaiya, K.R.; Di Pasqua, A.; Sekrani, G.; Steffens, J.; Tibaut, J.;
Wichmann, N.; et al. NanoRound: A benchmark study on the numerical approach in nanofluids’ simulation. Int. Commun. Heat
Mass Transf. 108, 104292, 2019.
[16] Onyiriuka, E.J.; Ikponmwoba, E.A.A. Numerical investigation of mango leaves-water nanofluid under laminar flow regime.
Niger. J. Technol. 38, 348–354, 2019.
[17] Jamali, M.; Toghraie, D. Investigation of heat transfer characteristics in the developing and the developed flow of nanofluid inside
a tube with different entrances in the transition regime. J. Therm. Anal. Calorim. 139, 685–699, 2020.
[18] Fadodun, O.G.; Amosun, A.A.; Salau, A.O.; Olaloye, D.O.; Ogundeji, J.A.; Ibitoye, F.I.; Balogun, F.A. Numerical investigation and
sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41, 3–30, 2020.
[19] Goutam, S., and Paul, M. C. (2014) Discrete phase approach for nanofluids
flow in pipe. In: Second International Conference on Advances In Civil, Structural and Mechanical Engineering- CSM, 16-17 Nov 2014, Birmingham, UK. 2014.
[20] R. Deepak Selvakumar, S. Dhinakaran. Heat transfer and particle migration in nanofluid flow around a circular bluff body using a two-way coupled Eulerian-Lagrangian approach. International Journal of Heat and Mass Transfer 115 , 282–293, 2017.
[21] M. Bovand, S. Rashidi, G. Ahmadi, J.A. Esfahani, Effects of trap and reflect particle
boundary conditions on particle transport and convective heat transfer for duct flow-A two-way coupling of EulerianLagrangian Model, Applied Thermal Engineering, doi:http://dx.doi.org/10.1016/j.applthermaleng.
2016.07.124, 2016.
[20] Goutam, S., and Paul, M. C. Discrete phase approach for nanofluids flow in pipe. In: Second International Conference on Advances In Civil,
Structural and Mechanical Engineering- CSM, 16-17 Nov 2014,Birmingham, UK, 2014.
[21] W.M. Kays, M.E. Crawford, Convection heat and mass transfer, 2nd ed. McGraw Hill, New York, 1980.
[22] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 40 , 227–233, 1993.
[23] M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers. Manag. 52 , 789–793, 2011.
[24] R.H. Notter, M.W. Rouse, A solution to the Graetz problem-III. Fully developed region heat transfer rates, Chem. Eng. Sci. 27 , 2073–2093, 1972.
[25] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf. 11 , 151–170, 1998.
[26] S. Suresh, M. Chandrasekar, S.C. Sekhar, Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp. Thermal Fluid Sci. 35 , 542–549, 2011.