کاهش ضریب گشتاور غلتشی در استفاده از سامانه اسپلیت درگ رادر با استفاده از فنس‌های بال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 عضو هیات علمی / گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش با استفاده از روش مطالعه پارامتری به طراحی فنس‌های بال پرداخته شده است. در این جا با انحراف گردابه‌های رأس بال به کاهش ضریب غلتشی اضافه تولید شده توسط سامانه اسپلیت درگ رادر پرداخته شده است. این سامانه کنترلی برای تولید گشتاور گردشی در پهپادهای بال پرنده استفاده می‌شود. اندازه فنس‌ها بر اساس ابعاد گردابه در زوایای حمله مختلف انتخاب شده است. در این تحقیق معادلات بقا توسط روش حجم محدود گسسته شده است سپس معادلات جبری گسسته شده توسط الگوریتم سیمپل سی حل شده است. در این شبیه سازی از مدل دو معادله‌ای کا اومگا- اس اس تی (k-w-sst) برای مدل سازی جریان آشفته استفاده شده است. پهپاد استفاده شده در این آزمایش، هواپیمای بالپرنده لامبدا شکل سوینگ می‌باشد. فنس‌های تولید شده در سه ارتفاع مختلف و سه موقعیت مختلف در طول بال نصب گردیده‌اند که در زوایای حمله بالا مورد بررسی قرار گرفته‌اند. نتایج نشان می‌دهند که استفاده از فنس‌ها در همه زوایای حمله از منظر آیرودینامیکی مناسب نخواهد بود؛ اما در نهایت بهینه‌ترین محل قرارگیری فنس برای کاهش ضریب گشتاور غلتشی مزاحم معرفی خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reducing the rolling moment coefficient in the use of split drag rudder system using wing fences

نویسندگان [English]

  • Afshin Madani 1
  • Mohammad Hassan Djavareshkian 2
1 Mech. Engg. Dept. Faculty of Engg. Ferdowsi University of Mashhad
2 Mech. Engg. Dept. Faculty of Engg. Ferdowsi University of Mashhad
چکیده [English]

In this research, wing fences have been designed using the parametric study method. Here, by deflecting the vortices of the wing apex, the excess rolling coefficient produced by the split drag rudder system has been reduced. This control system is used to generate yawing moment in flying wing UAVs. The size of the fences is selected based on the dimensions of the vortex at different AOA. In this research, the survival equations are discretized by the finite volume method, then the discretized algebraic equations are solved by the Simple C algorithm. In this simulation, the K-W-SST two-equation model is used to model the turbulent flow. The UAV used in this experiment is a lambda-shaped flying aircraft. The produced fence was installed at three different heights and three different positions along the wing, which were investigated at high AOA. The results show that the use of fences in all AOA will not be suitable from an aerodynamic point of view; But finally, the most optimal location of the fence will be introduced to reduce the disturbing rolling moment coefficient.

کلیدواژه‌ها [English]

  • Wing fence
  • flying wing
  • split drag rudder
  • wing apex vortex
  • lambda wing UAV
[1] J. Brett and A. Ooi, Effect of sweep angle on the vortical flow over delta wings at an angle of attack of 10°, Journal of Engineering Science and Technology, Vol. 9, No. 6, PP. 768–781, 2014.
[2] A. Madani, Paramtric Study of split-drag system at different angles of attack and comparison between crow Flap system and split-drag in a prototype flying wing UAV, MSC Thesis, Department of Engineering, Ferdowsi University, Mashhad, 2022. (in Persianفارسی ).
[3] N. Qin, A. Vavalle, A. Le Moigne, M. Laban, K. Hackett, and P. Weinerfelt, Aerodynamic considerations of blended wing body aircraft, Progress in Aerospace Sciences, Vol. 40, No. 6, PP. 321–343, 2004.
[4] J. Brett and A. Ooi, Effect of sweep angle on the vortical flow over delta wings at an angle of attack of 10, Journal of Engineering Science and Technology, Vol. 9, No. 6, PP. 768–781, 2014.
[5] K. Petterson, Low-speed aerodynamic and flowfield characteristics of a UCAV, 24th AIAA Applied Aerodynamics Conference, San Francisco, California, P. 2986, June 5-8, 2006.
[6] H. Shim and S. O. Park, Low-speed wind-tunnel test results of a BWB-UCAV model, Procedia Engineering, Vol. 67, PP. 50–58, 2013.
[7] A. Ko, K. Chang, D.-J. Sheen, Y.-H. Jo, and H. J. Shim, CFD Analysis of the Sideslip Angle Effect around a BWB Type Configuration, International Journal of Aerospace Engineering, Vol. 2019, 2019.
[8] J. Luckring, A survey of factors affecting blunt-leading-edge separation for swept and semi-slender wings, 28th AIAA applied aerodynamics conference, Chicago, P. 4820, 2010.
[9] M. Rütten, B. Dölle, M. Rein, J. Künemund, and S. Saalfeld, Numerical flow investigation of morphing leading edges for the enhancement of maneuverability of unmanned combat air vehicles, 30th AIAA Applied Aerodynamics Conference, P. 3326, 2012.
[10] S. Pfnür, A. Hövelmann, D. Sedlacek, and C. Breitsamter, Vortex flow interaction phenomena on multi swept delta wings at subsonic speeds, STO-MP-AVT-307, 20, 2019.
[11] J. Luckring, A survey of factors affecting blunt-leading-edge separation for swept and semi-slender wings, in 28th AIAA applied aerodynamics conference, P. 4820, 2010.
[12] M. K. Sobhani, M. Dehghani Manshadi, M. Bazzazzadeh, and M. Ilbeygi, Experimental Investigation of The Flow Field Over a Non-Slender lambda Shaped Wing by Pressure Measurement, Journal of Aeronautical Engineering, Vol. 17, No. 1, PP. 10–21, 2015. (in Persianفارسی ).
[13] B. K. McLain, Steady and unsteady aerodynamic flow studies over a 1303 UCAV configuration, Monterey, California. Naval Postgraduate School, Citeseer, 2009.
[14] Z. J. Li and D. L. Ma, Control characteristics analysis of split-drag-rudder, Applied Mechanics and Materials, 2014, Vol. 472, PP. 185–190.
[15] G. Stenfelt and U. Ringertz, Yaw control of a tailless aircraft configuration, Journal of Aircraft, Vol. 47, No. 5, PP. 1807–1811, 2010.
[16]  A. Madani, Moghimi-Esfandabadi, M. H., Djavareshkian, M. H, Investigating the effect of the placement of the split drag rudder control system along the wing span of a flying wing aircraft on rolling and yawing moments, Aerospace Knowledge and Technology Journal, Vol. 11, No. 2, PP. 25-37, 2023. (in Persianفارسی ).
[17] A. Madani and M. H. Djavareshkian, Aerodynamic Investigation of Crow Flap Control System in a Flying Wing UAV Aircraft, Journal of Aeronautical Engineering, 2022. (in Persianفارسی )
[18] A. Madani, M. H. Djavareshkian, and R. KARIMI KELAYEH, Optimization of split drag rudder mechanism at different angles of attack in a flying wing airplane, Fluid Mechanics and Aerodynamics Journal, Vol. 11, No. 1, PP. 1–16, 2022. (in Persianفارسی ).
[19] N. Namura, S. Obayashi, and S. Jeong, Efficient global optimization of vortex generators on a supercritical infinite wing,  Journal of Aircraft, Vol. 53, No. 6, PP. 1670–1679, 2016.
[20] D. S. Miklosovic, M. M. Murray, and L. E. Howle, Experimental evaluation of sinusoidal leading edges, Journal of Aircraft, Vol. 44, No. 4, PP. 1404–1408, 2007.
[21] E. Gnapowski, Review of Selected Methods for Increasing the Aerodynamic Force of the Wing,  Advances in Science and Technology. Research Journal, Vol. 13, No. 1, PP. 60–67, 2019.
[22] M. O. L. Hansen et al., Aerodynamically shaped vortex generators, Wind Energy, Vol. 19, No. 3, PP. 563–567, 2016.
[23] H. K. Naeini, M. Nili-Ahmadabadi, Y. S. Park, and K. C. Kim, Effect of nature-inspired needle-shaped vortex generators on the aerodynamic features of a double-delta wing, International Journal of Mechanical Sciences, Vol. 202, P. 106502, 2021.
[24] J. K. Dickson and F. B. Sutton, The Effect of Wing Height on the Longitudinal Characteristics at High Subsonic Speeds of a Wing-fuselage-tail Combination Having a Wing with 40 Degrees of Sweepback and NACA Four-digit Thickness Distribution, 1955.
[25] J. Wauters, I. Couckuyt, N. Knudde, T. Dhaene, and J. Degroote, Multi-objective optimization of a wing fence on an unmanned aerial vehicle using surrogate-derived gradients, Structural and Multidisciplinary Optimization, Vol. 61, PP. 353–364, 2020.
[26] R. K. Kelayeh and M. H. Djavareshkian, Aerodynamic investigation of twist angle variation based on wing smarting for a flying wing, Chinese J. Aeronaut., Vol. 34, No. 2, PP. 201–216, 2021.
[27] G. Stenfelt and U. Ringertz, Lateral stability and control of a tailless aircraft configuration, Journal of Aircraft, Vol. 46, No. 6, PP. 2161–2164, 2009.